Artículo
Experimental design and optimization of a novel dual-release drug delivery system with therapeutic potential against infection with Helicobacter pylori
Arrua, Eva Carolina
; Sanchez, Sofía V.; Trincado, Valeria; Hidalgo, Antonio; Quest, Andrew F. G.; Morales, Javier O.
Fecha de publicación:
05/2022
Editorial:
Elsevier Science
Revista:
Colloids and Surfaces B: Biointerfaces
ISSN:
0927-7765
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The objective of this study was to develop clarithromycin-loaded lipid nanocarriers and incorporate them into microcapsules for pH-specific localized release of clarithromycin in the Helicobacter pylori microenvironment in order to obtain a gastro-retentive and pH-sensitive formulation. A Plackett-Burman design was applied to identify the effect of 5 factors on 3 responses. Then, a central composite design was applied to estimate the most important factors leading to the best compromise between lower particle size, polydispersity index and particle size changes. The optimized clarithromycin-loaded nanocapsules were employed to generate microcapsules by different methodologies. Nanocarriers and microcapsules were characterized in vitro. Experimental design and conditions were optimized to obtain nanocapsules of around 100 nm by a modified phase inversion-based process. High particle size homogeneity and high stability were achieved. At 4 °C both optimized lipid nanocapsules were stable during at least 365 days, confirming stability under those conditions. Clarithromycin incorporation in the nanocarrier was effective. Both types of microcoating were evaluated regarding their pH sensitivity. Spray drying microcapsules exhibited similar and uncontrolled release profiles at pH 2 and 7.4. Alternatively, when microcoatings were generated using an Encapsulator, release was insignificant at pH 2, while at pH 7.4 release was triggered, and appeared more appropriate to formulate microcapsules that release nanocarriers under pH neutral Helicobacter pylori microenvironment conditions, thereby permitting effective drug delivery in infected locations. The release of clarithromycin from lipid nanocarrier loaded microcapsules was pH-sensitive suggesting that this could be an effective strategy for clarithromycin delivery to the Helicobacter pylori microenvironment. Clarithromycin nanocapsules with and without microcoating showed a high anti-Helicobacter pylori activity in vitro.
Palabras clave:
CLARITHROMYCIN
,
EXPERIMENTAL DESIGN
,
HELICOBACTER PYLORI
,
NANOCAPSULES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (CIDMEJu)
Articulos de CENTRO DE INVESTIGACION Y DESARROLLO EN MATERIALES AVANZADOS Y ALMACENAMIENTO DE ENERGIA DE JUJUY
Articulos de CENTRO DE INVESTIGACION Y DESARROLLO EN MATERIALES AVANZADOS Y ALMACENAMIENTO DE ENERGIA DE JUJUY
Citación
Arrua, Eva Carolina; Sanchez, Sofía V.; Trincado, Valeria; Hidalgo, Antonio; Quest, Andrew F. G.; et al.; Experimental design and optimization of a novel dual-release drug delivery system with therapeutic potential against infection with Helicobacter pylori; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 213; 5-2022; 1-9
Compartir
Altmétricas