Artículo
On the neural network flow of spin configurations
Acevedo, Santiago Daniel
; Lamas, Carlos Alberto
; Costa, Alejo
; Sturla, Mauricio Bernardo
; Grigera, Tomas Sebastian
Fecha de publicación:
10/2022
Editorial:
Elsevier Science
Revista:
Computational Materials Science
ISSN:
0927-0256
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the so-called neural network flow of spin configurations in the 2-d Ising ferromagnet. This flow is generated by successive reconstructions of spin configurations, obtained by an artificial neural network like a restricted Boltzmann machine or an autoencoder. It was reported recently that this flow may have a fixed point at the critical temperature of the system, and even allow the computation of critical exponents. Here we focus on the flow produced by a fully-connected autoencoder, and we refute the claim that this flow converges to the critical point of the system by directly measuring physical observables, and showing that the flow strongly depends on the network hyperparameters. We explore the network metric, the reconstruction error, and we relate it to the so called intrinsic dimension of data, to shed light on the origin and properties of the flow.
Palabras clave:
AUTOENCODERS
,
NEURAL NETWORK FLOW
,
UNSUPERVISED MACHINE LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Acevedo, Santiago Daniel; Lamas, Carlos Alberto; Costa, Alejo; Sturla, Mauricio Bernardo; Grigera, Tomas Sebastian; On the neural network flow of spin configurations; Elsevier Science; Computational Materials Science; 213; 10-2022; 1-6
Compartir
Altmétricas