Artículo
Boundedness and concentration of random singular integrals defined by wavelet summability kernels
Fecha de publicación:
10/2022
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We use Cramér-Chernoff type estimates in order to study the Calderón-Zygmund structure of the kernels ∑I∈DaI(ω)ψI(x)ψI(y), and their concentration about the mean, where aI are subgaussian independent random variables and {ψI:I∈D} is a wavelet basis where D are the dyadic intervals in R. We consider both, the cases of standard smooth wavelets and the case of the Haar wavelet.
Palabras clave:
SINGULAR INTEGRALS
,
SUBGAUSSIAN RANDOM VARIABLE
,
WAVELETS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Boundedness and concentration of random singular integrals defined by wavelet summability kernels; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 514; 2; 10-2022; 1-16
Compartir
Altmétricas