Mostrar el registro sencillo del ítem

dc.contributor.author
Vera, Matías Alejandro  
dc.contributor.author
González, Martín Germán  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.date.available
2023-08-29T15:57:12Z  
dc.date.issued
2023-05  
dc.identifier.citation
Vera, Matías Alejandro; González, Martín Germán; Rey Vega, Leonardo Javier; Invariant representations in deep learning for optoacoustic imaging; American Institute of Physics; Review of Scientific Instruments; 94; 5; 5-2023; 1-11  
dc.identifier.issn
0034-6748  
dc.identifier.uri
http://hdl.handle.net/11336/209767  
dc.description.abstract
Image reconstruction in optoacoustic tomography (OAT) is a trending learning task highly dependent on measured physical magnitudes present at sensing time. A large number of different settings and also the presence of uncertainties or partial knowledge of parameters can lead to reconstruction algorithms that are specifically tailored and designed to a particular configuration, which could not be the one that will ultimately be faced in a final practical situation. Being able to learn reconstruction algorithms that are robust to different environments (e.g., the different OAT image reconstruction settings) or invariant to such environments is highly valuable because it allows us to focus on what truly matters for the application at hand and discard what are considered spurious features. In this work, we explore the use of deep learning algorithms based on learning invariant and robust representations for the OAT inverse problem. In particular, we consider the application of the ANDMask scheme due to its easy adaptation to the OAT problem. Numerical experiments are conducted showing that when out-of-distribution generalization (against variations in parameters such as the location of the sensors) is imposed, there is no degradation of the performance and, in some cases, it is even possible to achieve improvements with respect to standard deep learning approaches where invariance robustness is not explicitly considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
OAT  
dc.subject
Out of Distribution  
dc.subject
Invariant  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Invariant representations in deep learning for optoacoustic imaging  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-28T11:28:27Z  
dc.journal.volume
94  
dc.journal.number
5  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Vera, Matías Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: González, Martín Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.journal.title
Review of Scientific Instruments  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/rsi/article/94/5/054904/2888187/Invariant-representations-in-deep-learning-for  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0139286