Artículo
Adaptive synchrosqueezing wavelet transform for real-time applications
Fecha de publicación:
08/2023
Editorial:
Academic Press Inc Elsevier Science
Revista:
Digital Signal Processing
ISSN:
1051-2004
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Time-Frequency Analysis is an important tool that is widely used in engineering, applied sciences, and industrial applications. Several techniques have emerged in the last decade to increase the time-frequency resolution of such representations. However, in many cases, these techniques imply a heavy computational burden, which is particularly troublesome for embedded devices, edge computing, or online applications in general. In this paper, we introduce an adaptive algorithm based on the Synchrosqueezing Wavelet Transform, aimed at implementations on systems with constrained computational power. We test the performance of the algorithm on both synthetic and real-world signals. Additionally, we present a software architecture to implement the data processing algorithm keeping in mind the portability of the solution to different devices. A companion Python package has been made available for public use.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Marchi, Edgardo Jose; Cervetto, Marcos; Galarza, Cecilia Gabriela; Adaptive synchrosqueezing wavelet transform for real-time applications; Academic Press Inc Elsevier Science; Digital Signal Processing; 140; 8-2023; 1-17
Compartir
Altmétricas