Mostrar el registro sencillo del ítem
dc.contributor.author
Silveira, Eduarda M. O.
dc.contributor.author
Radeloff, Volker
dc.contributor.author
Martínez Pastur, Guillermo José
dc.contributor.author
Martinuzzi, Sebastián
dc.contributor.author
Politi, Natalia
dc.contributor.author
Lizárraga, Roberto Leonidas
dc.contributor.author
Rivera, Luis Osvaldo
dc.contributor.author
Gavier Pizarro, Gregorio
dc.contributor.author
Yin, He
dc.contributor.author
Rosas, Yamina Micaela
dc.contributor.author
Calamari, Noelia Cecilia
dc.contributor.author
Navarro, Maria F.
dc.contributor.author
Sica, Yanina
dc.contributor.author
Olah, Ashley M.
dc.contributor.author
Bono, Julieta
dc.contributor.author
Pidgeon, Anna Michle
dc.date.available
2023-08-29T14:40:34Z
dc.date.issued
2021-12
dc.identifier.citation
Silveira, Eduarda M. O.; Radeloff, Volker; Martínez Pastur, Guillermo José; Martinuzzi, Sebastián; Politi, Natalia; et al.; Forest phenoclusters for Argentina based on vegetation phenology and climate; Ecological Society of America; Ecological Applications; 32; 3; 12-2021; 1-21
dc.identifier.issn
1051-0761
dc.identifier.uri
http://hdl.handle.net/11336/209745
dc.description.abstract
Forest biodiversity conservation and species distribution modeling greatly benefit from broad-scale forest maps depicting tree species or forest types rather than just presence and absence of forest, or coarse classifications. Ideally, such maps would stem from satellite image classification based on abundant field data for both model training and accuracy assessments, but such field data do not exist in many parts of the globe. However, different forest types and tree species differ in their vegetation phenology, offering an opportunity to map and characterize forests based on the seasonal dynamic of vegetation indices and auxiliary data. Our goal was to map and characterize forests based on both land surface phenology and climate patterns, defined here as forest phenoclusters. We applied our methodology in Argentina (2.8 million km2), which has a wide variety of forests, from rainforests to cold-temperate forests. We calculated phenology measures after fitting a harmonic curve of the enhanced vegetation index (EVI) time series derived from 30-m Sentinel 2 and Landsat 8 data from 2018–2019. For climate, we calculated land surface temperature (LST) from Band 10 of the thermal infrared sensor (TIRS) of Landsat 8, and precipitation from Worldclim (BIO12). We performed stratified X-means cluster classifications followed by hierarchical clustering. The resulting clusters separated well into 54 forest phenoclusters with unique combinations of vegetation phenology and climate characteristics. The EVI 90th percentile was more important than our climate and other phenology measures in providing separability among different forest phenoclusters. Our results highlight the potential of combining remotely sensed phenology measures and climate data to improve broad-scale forest mapping for different management and conservation goals, capturing functional rather than structural or compositional characteristics between and within tree species. Our approach results in classifications that go beyond simple forest–nonforest in areas where the lack of detailed ecological field data precludes tree species–level classifications, yet conservation needs are high. Our map of forest phenoclusters is a valuable tool for the assessment of natural resources, and the management of the environment at scales relevant for conservation actions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Ecological Society of America
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTER
dc.subject
CONSERVATION
dc.subject
ENHANCED VEGETATION INDEX
dc.subject
GREENNESS
dc.subject
LAND SURFACE TEMPERATURE
dc.subject
LANDSAT 8
dc.subject
PRECIPITATION
dc.subject
SENTINEL 2
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Forest phenoclusters for Argentina based on vegetation phenology and climate
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-04T20:16:00Z
dc.journal.volume
32
dc.journal.number
3
dc.journal.pagination
1-21
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Silveira, Eduarda M. O.. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Radeloff, Volker. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
dc.description.fil
Fil: Martinuzzi, Sebastián. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Politi, Natalia. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
dc.description.fil
Fil: Lizárraga, Roberto Leonidas. Administración de Parques Nacionales. Delegación Regional del Noroeste; Argentina
dc.description.fil
Fil: Rivera, Luis Osvaldo. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
dc.description.fil
Fil: Gavier Pizarro, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina
dc.description.fil
Fil: Yin, He. Kent State University; Estados Unidos
dc.description.fil
Fil: Rosas, Yamina Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
dc.description.fil
Fil: Calamari, Noelia Cecilia. Instituto Nacional de Tecnología Agropecuaria; Argentina
dc.description.fil
Fil: Navarro, Maria F.. Instituto Nacional de Tecnología Agropecuaria; Argentina
dc.description.fil
Fil: Sica, Yanina. University of Yale; Estados Unidos
dc.description.fil
Fil: Olah, Ashley M.. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Bono, Julieta. No especifíca;
dc.description.fil
Fil: Pidgeon, Anna Michle. University of Wisconsin; Estados Unidos
dc.journal.title
Ecological Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/eap.2526
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.2526
Archivos asociados