Artículo
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2
Bruillard, Paul; Galindo, César; Hong, Seung Moon; Kashina, Yevgenia; Naidu, Deepak; Natale, Sonia Lujan
; Plavnik, Julia Yael
; Rowell, Eric C.
Fecha de publicación:
04/2014
Editorial:
Canadian Mathematical Soc
Revista:
Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques
ISSN:
0008-4395
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We classify integral modular categories of dimension pq^4 and p^2q^2, where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.
Palabras clave:
Fusion Category
,
Modular Category
,
Group-Theoretical Fusion Category
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bruillard, Paul; Galindo, César; Hong, Seung Moon; Kashina, Yevgenia; Naidu, Deepak; et al.; Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 4; 4-2014; 721-734
Compartir
Altmétricas