Artículo
Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
Asselah, Amine; Ferrari, Pablo Augusto
; Groisman, Pablo Jose
; Jonckheere, Matthieu Thimothy Samson
Fecha de publicación:
01/2016
Editorial:
Inst Mathematical Statistics
Revista:
Annales de L'institut Henri Poincare-probabilites Et Statistiques
ISSN:
0246-0203
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Consider N particles moving independently, each one according to a subcritical continuous-time Galton-Watson process unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random. The resulting dynamics is called Fleming-Viot process. We show that for each N there exists a unique invariant measure for the Fleming-Viot process, and that its stationary empirical distribution converges, as N goes to infinity, to the minimal quasi-stationary distribution of the Galton-Watson process conditioned on non-extinction.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Asselah, Amine; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case; Inst Mathematical Statistics; Annales de L'institut Henri Poincare-probabilites Et Statistiques; 52; 2; 1-2016; 647-668
Compartir
Altmétricas