Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Abnormal EEG signal energy in the elderly: a wavelet analysis of event-related potentials during a Stroop task

Sánchez Moguel, Sergio M.; Baravalle, RománIcon ; González Salinas, Sofía; Rosso, Osvaldo AnibalIcon ; Fernández, Thalía; Montani, Fernando FabiánIcon
Fecha de publicación: 04/2022
Editorial: Elsevier Science
Revista: Journal of Neuroscience Methods
ISSN: 0165-0270
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Background: Previous work showed that elderly with excess in theta activity in their resting state electroencephalogram (EEG) are at higher risk of cognitive decline than those with a normal EEG. By using event-related potentials (ERP) during a counting Stroop task, our prior work showed that elderly with theta excess have a large P300 component compared with normal EEG group. This increased activity could be related to a higher EEG signal energy used during this task. New method: By wavelet analysis applied to ERP obtained during a counting Stroop task we quantified the energy in the different frequency bands of a group of elderly with altered EEG. Results: In theta and alpha bands, the total energy was higher in elderly subjects with theta excess, specifically in the stimulus categorization window (258–516 ms). Both groups solved the task with similar efficiency. Comparison with existing methods: The traditional ERP analysis in elderly compares voltage among conditions and groups for a given time window, while the frequency composition is not usually examined. We complemented our previous ERP analysis using a wavelet methodology. Furthermore, we showed the advantages of wavelet analysis over Short Time Fourier Transform when exploring EEG signal during this task. Conclusions: The higher EEG signal energy in ERP might reflect undergoing neurobiological mechanisms that allow the elderly with theta excess to cope with the cognitive task with similar behavioral results as the normal EEG group. This increased energy could promote a metabolic and cellular dysregulation causing a greater decline in cognitive function.
Palabras clave: COGNITIVE IMPAIRMENT , EEG , ELDERLY , EVENT-RELATED POTENTIAL , STROOP EFFECT , WAVELETS
Ver el registro completo
 
Archivos asociados
Tamaño: 8.967Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209660
DOI: https://doi.org/10.1016/j.jneumeth.2022.109608
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Sánchez Moguel, Sergio M.; Baravalle, Román; González Salinas, Sofía; Rosso, Osvaldo Anibal; Fernández, Thalía; et al.; Abnormal EEG signal energy in the elderly: a wavelet analysis of event-related potentials during a Stroop task; Elsevier Science; Journal of Neuroscience Methods; 376; 4-2022; 109608-109628
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES