Mostrar el registro sencillo del ítem
dc.contributor.author
Peterson, Victoria
dc.contributor.author
Galván, Catalina María
dc.contributor.author
Hernández, Hugo Sacha Uriel
dc.contributor.author
Saavedra, María Paula
dc.contributor.author
Spies, Ruben Daniel
dc.date.available
2023-08-28T18:56:22Z
dc.date.issued
2022-06
dc.identifier.citation
Peterson, Victoria; Galván, Catalina María; Hernández, Hugo Sacha Uriel; Saavedra, María Paula; Spies, Ruben Daniel; A motor imagery vs. rest dataset with low-cost consumer grade EEG hardware; Elsevier Inc; Data in Brief; 42; 6-2022; 1-9
dc.identifier.issn
2352-3409
dc.identifier.uri
http://hdl.handle.net/11336/209631
dc.description.abstract
The data consist of electroencephalography (EEG) signals acquired by means of low-cost consumer-grade devices from 10 participants (four females, right-handed, mean age ± SD = 26.1 ± 4.0 years) without any previous experience in Brain-Computer Interfaces (BCIs) usage. The BCI protocol consisted of two conditions, namely the kinesthetic imagination of grasping movement (motor imagery, MI) of the dominant hand and a rest/idle condition. Five protocol runs were required to be performed by each participant in a single-day session, of about 1.5 h. The first run, called RUN0, involved 5 trials of real grasping movement together with the same number of trials in a rest condition. This first run was done to both better explain the protocol and to encourage the participant to focus on the sensation of executing the movement. The rest of the runs (RUN1-RUN4) were identical, consisting of 20 trials for each condition presented in a random order. The electrical brain activity was registered from 15 electrodes covering the sensorimotor area, at a sampling frequency of 125 Hz. Muscle activity of the dominant hand was controlled via the electromyography (EMG) activity by two electrodes placed at two antagonist muscles involved in the flexion/extension of the wrist. The recordings were performed in a non-shielded office, by means of low-cost consumer grade devices and free multi-platform open source software. The EMG corruption level was analyzed and EEG trials for which the EMG activity was higher than a prescribed threshold value, were discarded. During acquisition, EEG data was digitally band-pass filtered between 0.5 and 45 Hz. These data provide a motor imagery vs. rest EEG dataset, relevant for BCI for motor rehabilitation applications. Since the recordings were performed by means of low-cost consumer grade devices in a non-controlled environment, this dataset provides an excellent source for exploring robust brain decoding techniques for future in-home BCI usage.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
BRAIN-COMPUTER INTERFACES
dc.subject
ELECTROENCEPHALOGRAPHY (EEG)
dc.subject
LOW-COST TECHNOLOGIES
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A motor imagery vs. rest dataset with low-cost consumer grade EEG hardware
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:00:26Z
dc.journal.volume
42
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Hernández, Hugo Sacha Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Saavedra, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Data in Brief
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352340922004280
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.dib.2022.108225
Archivos asociados