Mostrar el registro sencillo del ítem

dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Galván, Catalina María  
dc.contributor.author
Hernández, Hugo Sacha Uriel  
dc.contributor.author
Saavedra, María Paula  
dc.contributor.author
Spies, Ruben Daniel  
dc.date.available
2023-08-28T18:56:22Z  
dc.date.issued
2022-06  
dc.identifier.citation
Peterson, Victoria; Galván, Catalina María; Hernández, Hugo Sacha Uriel; Saavedra, María Paula; Spies, Ruben Daniel; A motor imagery vs. rest dataset with low-cost consumer grade EEG hardware; Elsevier Inc; Data in Brief; 42; 6-2022; 1-9  
dc.identifier.issn
2352-3409  
dc.identifier.uri
http://hdl.handle.net/11336/209631  
dc.description.abstract
The data consist of electroencephalography (EEG) signals acquired by means of low-cost consumer-grade devices from 10 participants (four females, right-handed, mean age ± SD = 26.1 ± 4.0 years) without any previous experience in Brain-Computer Interfaces (BCIs) usage. The BCI protocol consisted of two conditions, namely the kinesthetic imagination of grasping movement (motor imagery, MI) of the dominant hand and a rest/idle condition. Five protocol runs were required to be performed by each participant in a single-day session, of about 1.5 h. The first run, called RUN0, involved 5 trials of real grasping movement together with the same number of trials in a rest condition. This first run was done to both better explain the protocol and to encourage the participant to focus on the sensation of executing the movement. The rest of the runs (RUN1-RUN4) were identical, consisting of 20 trials for each condition presented in a random order. The electrical brain activity was registered from 15 electrodes covering the sensorimotor area, at a sampling frequency of 125 Hz. Muscle activity of the dominant hand was controlled via the electromyography (EMG) activity by two electrodes placed at two antagonist muscles involved in the flexion/extension of the wrist. The recordings were performed in a non-shielded office, by means of low-cost consumer grade devices and free multi-platform open source software. The EMG corruption level was analyzed and EEG trials for which the EMG activity was higher than a prescribed threshold value, were discarded. During acquisition, EEG data was digitally band-pass filtered between 0.5 and 45 Hz. These data provide a motor imagery vs. rest EEG dataset, relevant for BCI for motor rehabilitation applications. Since the recordings were performed by means of low-cost consumer grade devices in a non-controlled environment, this dataset provides an excellent source for exploring robust brain decoding techniques for future in-home BCI usage.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BRAIN-COMPUTER INTERFACES  
dc.subject
ELECTROENCEPHALOGRAPHY (EEG)  
dc.subject
LOW-COST TECHNOLOGIES  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A motor imagery vs. rest dataset with low-cost consumer grade EEG hardware  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:00:26Z  
dc.journal.volume
42  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Hernández, Hugo Sacha Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Saavedra, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Data in Brief  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352340922004280  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.dib.2022.108225