Mostrar el registro sencillo del ítem

dc.contributor.author
Wood, Axel  
dc.contributor.author
Cerrato, Brown Marcos  
dc.contributor.author
Bonomini, Maria Paula  
dc.contributor.other
Ferrández Vicente, José Manuel  
dc.contributor.other
Álvarez Sánchez, José Ramón  
dc.contributor.other
de la Paz López, Félix  
dc.contributor.other
Adeli, Hojjat  
dc.date.available
2023-08-28T15:22:39Z  
dc.date.issued
2022  
dc.identifier.citation
Automatic left bundle branch block diagnose using a 2-D convolutional network; 9th International Work-Conference on the Interplay between Natural and Artificial Computation; España; 2022; 576-585  
dc.identifier.isbn
978-3-031-06241-4  
dc.identifier.uri
http://hdl.handle.net/11336/209584  
dc.description.abstract
Left bundle branch block (LBBB) patients are the populationthat benefits most from cardiac resynchronization therapy (CRT),a therapy applied in heart failure. However, CRT presents about 40%non-responders rates. A plausible explanation to this fact, is a precariousLBBB diagnosis. QRS duration is currently one of three pillars inLBBB diagnosis. However, ECG morphology is severely altered in thepresence of LBBB, affecting seriously the process of ECG delineation.Thus, QRS duration becomes a highly unreliable measure in LBBB diagnosis.Herein, we propose a LBBB classification framework complettelyindependent of temporal measures. In this line, a 2-D convolutional network(CNN) was utilized to separate strict LBBB patients from (notstrict/not) LBBB patients, obtained from a subset of the Multi-centerAutonomic Defibrillator Implantation (MADIT) trial. In order to fit the2-D architecture, we fed the CNN with 10 s- spectrograms, constructingand validating 6 separated unilead models, one per precordial lead.From all analyzed models, the one using lead V1 turned out to be themost informative. The latter, produced an 89% accuracy and 90% positivepredictive value. These results encourage the use of such statisticalmodels to provide a more reliable and automated LBBB diagnosis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LBBB DIAGNOSIS  
dc.subject
CRT  
dc.subject
NON-RESPONDERS RATE  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic left bundle branch block diagnose using a 2-D convolutional network  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-06-16T18:00:30Z  
dc.journal.pagination
576-585  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Wood, Axel. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Cerrato, Brown Marcos. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-06242-1_57  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-06242-1_57  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
9th International Work-Conference on the Interplay between Natural and Artificial Computation  
dc.date.evento
2022-06-03  
dc.description.paisEvento
España  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad de La Laguna  
dc.description.institucionOrganizadora
Universidad Nacional de Educación a Distancia  
dc.description.institucionOrganizadora
Universidad Politécnica de Cartagena  
dc.source.libro
Artificial intelligence in neuroscience: affective analysis and health applications  
dc.type
Conferencia