Mostrar el registro sencillo del ítem
dc.contributor.author
Wood, Axel
dc.contributor.author
Cerrato, Brown Marcos
dc.contributor.author
Bonomini, Maria Paula

dc.contributor.other
Ferrández Vicente, José Manuel
dc.contributor.other
Álvarez Sánchez, José Ramón
dc.contributor.other
de la Paz López, Félix
dc.contributor.other
Adeli, Hojjat
dc.date.available
2023-08-28T15:22:39Z
dc.date.issued
2022
dc.identifier.citation
Automatic left bundle branch block diagnose using a 2-D convolutional network; 9th International Work-Conference on the Interplay between Natural and Artificial Computation; España; 2022; 576-585
dc.identifier.isbn
978-3-031-06241-4
dc.identifier.uri
http://hdl.handle.net/11336/209584
dc.description.abstract
Left bundle branch block (LBBB) patients are the populationthat benefits most from cardiac resynchronization therapy (CRT),a therapy applied in heart failure. However, CRT presents about 40%non-responders rates. A plausible explanation to this fact, is a precariousLBBB diagnosis. QRS duration is currently one of three pillars inLBBB diagnosis. However, ECG morphology is severely altered in thepresence of LBBB, affecting seriously the process of ECG delineation.Thus, QRS duration becomes a highly unreliable measure in LBBB diagnosis.Herein, we propose a LBBB classification framework complettelyindependent of temporal measures. In this line, a 2-D convolutional network(CNN) was utilized to separate strict LBBB patients from (notstrict/not) LBBB patients, obtained from a subset of the Multi-centerAutonomic Defibrillator Implantation (MADIT) trial. In order to fit the2-D architecture, we fed the CNN with 10 s- spectrograms, constructingand validating 6 separated unilead models, one per precordial lead.From all analyzed models, the one using lead V1 turned out to be themost informative. The latter, produced an 89% accuracy and 90% positivepredictive value. These results encourage the use of such statisticalmodels to provide a more reliable and automated LBBB diagnosis.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LBBB DIAGNOSIS
dc.subject
CRT
dc.subject
NON-RESPONDERS RATE
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Automatic left bundle branch block diagnose using a 2-D convolutional network
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-06-16T18:00:30Z
dc.journal.pagination
576-585
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Wood, Axel. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Cerrato, Brown Marcos. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-06242-1_57
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-06242-1_57
dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
9th International Work-Conference on the Interplay between Natural and Artificial Computation
dc.date.evento
2022-06-03
dc.description.paisEvento
España

dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad de La Laguna
dc.description.institucionOrganizadora
Universidad Nacional de Educación a Distancia
dc.description.institucionOrganizadora
Universidad Politécnica de Cartagena
dc.source.libro
Artificial intelligence in neuroscience: affective analysis and health applications
dc.type
Conferencia
Archivos asociados