Artículo
Entropy-Based Informational Study of the COVID-19 Series of Data
Kowalski, Andres Mauricio; Portesi, Mariela Adelina
; Vampa, Victoria Cristina; Losada, Marcelo Adrián
; Holik, Federico Hernán
Fecha de publicación:
12/2022
Editorial:
MDPI
Revista:
Mathematics
ISSN:
2227-7390
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Since the appearance in China of the first cases, the entire world has been deeply affected by the flagellum of the Coronavirus Disease (COVID-19) pandemic. There have been many mathematical approaches trying to characterize the data collected about this serious issue. One of the most important aspects for attacking a problem is knowing what information is really available. We investigate here the information contained in the COVID-19 data of infected and deceased people in all countries, using informational quantifiers such as entropy and statistical complexity. For the evaluation of these quantities, we use the Bandt–Pompe permutation methodology, as well as the wavelet transform, to obtain the corresponding probability distributions from the available series of data. The period analyzed covers from the appearance of the disease up to the massive use of anti-COVID vaccines.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Kowalski, Andres Mauricio; Portesi, Mariela Adelina; Vampa, Victoria Cristina; Losada, Marcelo Adrián; Holik, Federico Hernán; Entropy-Based Informational Study of the COVID-19 Series of Data; MDPI; Mathematics; 10; 23; 12-2022; 459001-459016
Compartir
Altmétricas