Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A method for approximating optimal statistical significances with machine-learned likelihoods

Arganda Carreras, ErnestoIcon ; Marcano, Xabier; Lozano, Víctor Martín; Medina, Anibal DamianIcon ; Perez, Andres DanielIcon ; Szewc, ManuelIcon ; Szynkman, Alejandro AndrésIcon
Fecha de publicación: 11/2022
Editorial: Springer
Revista: European Physical Journal C: Particles and Fields
ISSN: 1434-6044
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.
Palabras clave: BSM Phenomenology , Collider Physics , Machine Learning , LHC
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.363Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209510
URL: https://arxiv.org/abs/2205.05952
DOI: http://dx.doi.org/10.1140/epjc/s10052-022-10944-3
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Arganda Carreras, Ernesto; Marcano, Xabier; Lozano, Víctor Martín; Medina, Anibal Damian; Perez, Andres Daniel; et al.; A method for approximating optimal statistical significances with machine-learned likelihoods; Springer; European Physical Journal C: Particles and Fields; 82; 11; 11-2022; 993-1007
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES