Mostrar el registro sencillo del ítem

dc.contributor.author
Cardoso Pereira, Isadora  
dc.contributor.author
Borges, João B.  
dc.contributor.author
Barros, Pedro H.  
dc.contributor.author
Loureiro, Antonio F.  
dc.contributor.author
Rosso, Osvaldo Anibal  
dc.contributor.author
Ramos, Heitor S.  
dc.date.available
2023-08-28T14:04:57Z  
dc.date.issued
2022-01  
dc.identifier.citation
Cardoso Pereira, Isadora; Borges, João B.; Barros, Pedro H.; Loureiro, Antonio F.; Rosso, Osvaldo Anibal; et al.; Leveraging the self-transition probability of ordinal patterns transition network for transportation mode identification based on GPS data; Springer; Nonlinear Dynamics; 107; 1; 1-2022; 889-908  
dc.identifier.issn
0924-090X  
dc.identifier.uri
http://hdl.handle.net/11336/209501  
dc.description.abstract
Analyzing people’s mobility and identifying the transportation mode is essential for cities to create travel diaries. It can help develop essential technologies to reduce traffic jams and travel time between their points, thus helping to improve the quality of life of citizens. Previous studies in this context extracted many specialized features, reaching hundreds of them. This approach requires domain knowledge. Other strategies focused on deep learning methods, which need intense computational power and more data than traditional methods to train their models. In this work, we propose using information theory quantifiers retained from the ordinal patterns (OPs) transformation for transportation mode identification. Our proposal presents the advantage of using fewer data. OP is also computationally inexpensive and has low dimensionality. It is beneficial for scenarios where it is hard to collect information, such as Internet-of-things contexts. Our results demonstrated that OP features enhance the classification results of standard features in such scenarios.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INFORMATION THEORY  
dc.subject
MOBILITY  
dc.subject
ORDINAL PATTERNS  
dc.subject
ORDINAL PATTERNS TRANSITION NETWORK  
dc.subject
TIME SERIES  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Leveraging the self-transition probability of ordinal patterns transition network for transportation mode identification based on GPS data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T18:00:08Z  
dc.journal.volume
107  
dc.journal.number
1  
dc.journal.pagination
889-908  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Cardoso Pereira, Isadora. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Borges, João B.. Universidade Federal do Rio Grande do Norte; Brasil  
dc.description.fil
Fil: Barros, Pedro H.. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Loureiro, Antonio F.. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; Brasil  
dc.journal.title
Nonlinear Dynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11071-021-07059-x