Mostrar el registro sencillo del ítem
dc.contributor.author
Pappaterra, Maria Lucia
dc.contributor.author
Ojeda, Silvia María
dc.contributor.author
Landi, Marcos Alejandro
dc.contributor.author
Obed Vallejos, Ronny
dc.date.available
2023-08-24T19:09:10Z
dc.date.issued
2021-12
dc.identifier.citation
Pappaterra, Maria Lucia; Ojeda, Silvia María; Landi, Marcos Alejandro; Obed Vallejos, Ronny; Strategy for Selecting a Quality Index for Images; Machine Intelligence Research Labs; International Journal of Computer Information Systems and Industrial Management Applications; 13; 12-2021; 348-363
dc.identifier.issn
2150-7988
dc.identifier.uri
http://hdl.handle.net/11336/209305
dc.description.abstract
In the past few decades, many image quality indices have been developed. However, they stem from different theoretical frameworks, application scenarios and purposes. Thus, users and researchers are often faced with the time-consuming task of deciding which quality index to choose when they require a reliable image quality index that is capable of emulating the human visual system (HVS). In this work, general criteria for selecting the most appropriate index from a given set of quality indices according to application needs are established. These criteria are based on the statistical coefficients of correlation and concordance. It is discussed why Kendall’s Tau and Spearman’s rank correlation coefficients—which are widely used to compare moreover, additional nonparametric tests and methods of agreement are incorporated: the concordance coefficients (Kendall’s w, Cohen’s kappa, Scott’s pi and Fleiss’ kappa) not explored so far, to determine the best procedures to compare digital images. The combination of all these strategies led to a more complete comparison method, from which a ranking of quality indices could be generated from any set of them. As an application, the performance and suitability of a large number of quality indices for various real-world scenarios is compared. Our experiments reveal that the indices are sensitive to the type of distortions. This work expanded previous studies by incorporating directional indices, which perform well in the numerical experiments developed using real datasets
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Machine Intelligence Research Labs
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Image analysis
dc.subject
Image quality indices
dc.subject
Measures of association
dc.subject
Concordance coefficients
dc.subject
Distortion types
dc.subject
Machine vision and scene understanding
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Strategy for Selecting a Quality Index for Images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-16T11:11:30Z
dc.journal.volume
13
dc.journal.pagination
348-363
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Pappaterra, Maria Lucia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
dc.description.fil
Fil: Obed Vallejos, Ronny. Universidad Tecnica Federico Santa Maria.; Chile
dc.journal.title
International Journal of Computer Information Systems and Industrial Management Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mirlabs.org/ijcisim/regular_papers_2021/IJCISIM_32.pdf
Archivos asociados