Mostrar el registro sencillo del ítem

dc.contributor.author
Palenzuela, Carlos  
dc.contributor.author
Aguilera-Miret, Ricard  
dc.contributor.author
Carrasco, Federico León  
dc.contributor.author
Ciolfi, Riccardo  
dc.contributor.author
Kalinani, Jay Vijay  
dc.contributor.author
Kastaun, Wolfgang  
dc.contributor.author
Miñano, Borja  
dc.contributor.author
Viganò, Daniele  
dc.date.available
2023-08-23T18:18:02Z  
dc.date.issued
2022-07  
dc.identifier.citation
Palenzuela, Carlos; Aguilera-Miret, Ricard; Carrasco, Federico León; Ciolfi, Riccardo; Kalinani, Jay Vijay; et al.; Turbulent magnetic field amplification in binary neutron star mergers; American Physical Society; Physical Review D; 106; 2; 7-2022; 1-21  
dc.identifier.issn
2470-0010  
dc.identifier.uri
http://hdl.handle.net/11336/209128  
dc.description.abstract
Magnetic fields are expected to play a key role in the dynamics and the ejection mechanisms that accompany the merger of two neutron stars. General relativistic magnetohydrodynamic (MHD) simulations offer a unique opportunity to unravel the details of the ongoing physical processes. Nevertheless, current numerical studies are severely limited by the fact that any affordable resolution remains insufficient to fully capture the small-scale dynamo, initially triggered by the Kelvin-Helmholtz instability, and later sourced by several MHD processes involving differential rotation. Here, we alleviate this limitation by using explicit large-eddy simulations, a technique where the unresolved dynamics occurring at the subgrid scales (SGS) is modeled by extra terms, which are functions of the resolved fields and their derivatives. The combination of high-order numerical schemes, high resolutions, and the gradient SGS model allow us to capture the small-scale dynamos produced during the binary neutron star mergers, as shown in previous works. Here, we follow the first 50 milliseconds after the merger and, for the first time, we find numerical convergence on the magnetic field amplification, in terms of integrated energy and spectral distribution over spatial scales. Among other results, we find that the average intensity of the magnetic field in the remnant saturates at ∼1016 G around 5 ms after the merger. After 20-30 ms, both toroidal and poloidal magnetic field components grow continuously, fed by the winding mechanism that provides a slow inverse cascade, i.e., gradually transferring kinetic into magnetic energy. We find no clear hints for magnetorotational instabilities and no significant impact of the magnetic field on the redistribution of angular momentum in the remnant in our simulations, probably due to the very turbulent and dynamical topology of the magnetic field at all stages, with small-scale components largely dominating over the large-scale ones. Although the magnetic field grows near the rotation axis of the remnant, longer large-eddy simulations are necessary to further investigate the formation of large-scale, helical structures close to the rotational axis, which could be associated to jet formation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TURBULENCE  
dc.subject
MAGNETOHYDRODYNAMICS  
dc.subject
NUMERICAL RELATIVITY  
dc.subject
BINARY MERGER  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Turbulent magnetic field amplification in binary neutron star mergers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T21:35:04Z  
dc.identifier.eissn
2470-0029  
dc.journal.volume
106  
dc.journal.number
2  
dc.journal.pagination
1-21  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Palenzuela, Carlos. Universidad de las Islas Baleares; España. Institut d’Estudis Espacials de Catalunya; España  
dc.description.fil
Fil: Aguilera-Miret, Ricard. Universidad de las Islas Baleares; España. Institut d’Estudis Espacials de Catalunya; España  
dc.description.fil
Fil: Carrasco, Federico León. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad de las Islas Baleares; España  
dc.description.fil
Fil: Ciolfi, Riccardo. Istituto Nazionale di Fisica Nucleare; Italia  
dc.description.fil
Fil: Kalinani, Jay Vijay. Università di Padova; Italia. Istituto Nazionale di Fisica Nucleare; Italia  
dc.description.fil
Fil: Kastaun, Wolfgang. Max-Planck-Institut Für Gravitationsphysik; Alemania. Leibniz Universitat Hannover; Alemania  
dc.description.fil
Fil: Miñano, Borja. Universidad de las Islas Baleares; España  
dc.description.fil
Fil: Viganò, Daniele. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias del Espacio ; España. Institut d’Estudis Espacials de Catalunya; España  
dc.journal.title
Physical Review D  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.023013  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1103/PhysRevD.106.023013