Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Toward Deep-Learning-Assisted Spectrally Resolved Imaging of Magnetic Noise

Meneses, FernandoIcon ; Wise, David F.; Pagliero, Daniela; Zangara, Pablo RenéIcon ; Dhomkar, Siddharth; Meriles, Carlos A.
Fecha de publicación: 07/2022
Editorial: American Physical Society
Revista: Physical Review Applied
e-ISSN: 2331-7019
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Óptica; Física Atómica, Molecular y Química

Resumen

Recent progress in the application of color centers to nanoscale spin sensing makes the combined use of noise spectroscopy and scanning probe imaging an attractive route for the characterization of arbitrary material systems. Unfortunately, the traditional approach to characterizing environmental magnetic field fluctuations from the measured probe signal typically requires the experimenter's input, thus complicating the implementation of automated imaging protocols based on spectrally resolved noise. Here, we probe the response of color centers in diamond in the presence of externally engineered random magnetic signals and implement a deep neural network to methodically extract information on their associated spectral densities. Building on a long sequence of successive measurements under different types of stimuli, we show that our network manages to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field with good fidelity under a broad set of conditions and with only a minimal measured data set, even in the presence of substantial experimental noise. These proof-of-principle results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
Palabras clave: Spin dynamics , Dynamical decoupling , Machine Learning , Noise
Ver el registro completo
 
Archivos asociados
Tamaño: 4.500Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209123
URL: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.18.024004
DOI: http://dx.doi.org/10.1103/PhysRevApplied.18.024004
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Meneses, Fernando; Wise, David F.; Pagliero, Daniela; Zangara, Pablo René; Dhomkar, Siddharth; et al.; Toward Deep-Learning-Assisted Spectrally Resolved Imaging of Magnetic Noise; American Physical Society; Physical Review Applied; 18; 2; 7-2022; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES