Mostrar el registro sencillo del ítem

dc.contributor.author
Li, Nantao  
dc.contributor.author
Zhao, Bin  
dc.contributor.author
Stavins, Robert  
dc.contributor.author
Peinetti, Ana Sol  
dc.contributor.author
Chauhan, Neha  
dc.contributor.author
Bashir, Rashid  
dc.contributor.author
Cunningham, Brian T.  
dc.contributor.author
King, William P.  
dc.contributor.author
Lu, Yi  
dc.contributor.author
Wang, Xing  
dc.contributor.author
Valera, Enrique  
dc.date.available
2023-08-23T14:28:09Z  
dc.date.issued
2022-02  
dc.identifier.citation
Li, Nantao; Zhao, Bin; Stavins, Robert; Peinetti, Ana Sol; Chauhan, Neha; et al.; Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing; Pergamon-Elsevier Science Ltd; Current Opinion In Solid State & Materials Science; 26; 1; 2-2022; 1-14  
dc.identifier.issn
1359-0286  
dc.identifier.uri
http://hdl.handle.net/11336/209066  
dc.description.abstract
The COVID-19 pandemic revealed fundamental limitations in the current model for infectious disease diagnosis and serology, based upon complex assay workflows, laboratory-based instrumentation, and expensive materials for managing samples and reagents. The lengthy time delays required to obtain test results, the high cost of gold-standard PCR tests, and poor sensitivity of rapid point-of-care tests contributed directly to society's inability to efficiently identify COVID-19-positive individuals for quarantine, which in turn continues to impact return to normal activities throughout the economy. Over the past year, enormous resources have been invested to develop more effective rapid tests and laboratory tests with greater throughput, yet the vast majority of engineering and chemistry approaches are merely incremental improvements to existing methods for nucleic acid amplification, lateral flow test strips, and enzymatic amplification assays for protein-based biomarkers. Meanwhile, widespread commercial availability of new test kits continues to be hampered by the cost and time required to develop single-use disposable microfluidic plastic cartridges manufactured by injection molding. Through development of novel technologies for sensitive, selective, rapid, and robust viral detection and more efficient approaches for scalable manufacturing of microfluidic devices, we can be much better prepared for future management of infectious pathogen outbreaks. Here, we describe how photonic metamaterials, graphene nanomaterials, designer DNA nanostructures, and polymers amenable to scalable additive manufacturing are being applied towards overcoming the fundamental limitations of currently dominant COVID-19 diagnostic approaches. In this paper, we review how several distinct classes of nanomaterials and nanochemistry enable simple assay workflows, high sensitivity, inexpensive instrumentation, point-of-care sample-to-answer virus diagnosis, and rapidly scaled manufacturing.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADDITIVE MANUFACTURED MATERIALS  
dc.subject
NANOCHEMISTRY  
dc.subject
NANOMATERIALS  
dc.subject
NANOSTRUCTURES  
dc.subject
NUCLEIC ACID ENGINEERING  
dc.subject
POINT-OF-CARE DIAGNOSIS  
dc.subject
SARS-COV-2  
dc.subject
COVID-19  
dc.subject.classification
Otras Nanotecnología  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-10T11:13:38Z  
dc.journal.volume
26  
dc.journal.number
1  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Li, Nantao. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Zhao, Bin. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Stavins, Robert. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Peinetti, Ana Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Chauhan, Neha. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Bashir, Rashid. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Cunningham, Brian T.. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: King, William P.. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Lu, Yi. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Wang, Xing. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.description.fil
Fil: Valera, Enrique. University of Illinois. Urbana - Champaign; Estados Unidos  
dc.journal.title
Current Opinion In Solid State & Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cossms.2021.100966