Artículo
Semidistributivity and Whitman Property in implication zroupoids
Fecha de publicación:
12/2021
Editorial:
De Gruyter
Revista:
Mathematica Slovaca
ISSN:
0139-9918
e-ISSN:
1337-2211
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In 2012, the second author introduced, and initiated the investigations into, the variety I of implication zroupoids that generalize De Morgan algebras and V-semilattices with 0. An algebra A = {A, →, 0}, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies: (x → y) → z ≈ [(z′ → x) → (y → z)′]′, where x′:= x → 0, and 0″ ≈ 0. Let I denote the variety of implication zroupoids and A ϵ I. For x, y ϵ A, let x Λ y:= (x → y′)′ and x V y:= (x′ Λ y′)′. In an earlier paper, we had proved that if A ϵ I, then the algebra Amj = {A, V, Λ} is a bisemigroup. The purpose of this paper is two-fold: First, we generalize the notion of semidistributivity from lattices to bisemigroups and prove that, for every A ϵ I, the bisemigroup Amj is semidistributive. Secondly, we generalize the Whitman Property from lattices to bisemigroups and prove that the subvariety M ϵJ of I, defined by the identity: x Λ y ≈ x V y, satisfies the Whitman Property. We conclude the paper with two open problems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semidistributivity and Whitman Property in implication zroupoids; De Gruyter; Mathematica Slovaca; 71; 6; 12-2021; 1329-1338
Compartir
Altmétricas