Mostrar el registro sencillo del ítem

dc.contributor.author
González, Martín Germán  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.date.available
2023-08-23T11:03:02Z  
dc.date.issued
2022  
dc.identifier.citation
Model-based Fully Dense UNet for Image Enhancement in Software-defined Optoacoustic Tomography; 2022 IEEE Biennial Congress of Argentina; San Juan; Argentina; 2022; 1-6  
dc.identifier.uri
http://hdl.handle.net/11336/208993  
dc.description.abstract
A deep neural network architecture for improving the performance of a software-defined optoacoustic tomography device is presented. Our approach is a hybrid one, in the sense that a powerful data-driven architecture (a FD-UNet) is combined with a structure that exploits model-guided information, in the form of the forward and adjoint operators of the acoustic problem. Besides that, the findings of a previous work on the noise and other effects on the measured sinograms are also exploited, in order to make the structure more robust in the task of correcting the artifacts that are typically introduced in the reconstructed images. The proposed solution is numerically trained and evaluated. In terms of the average mean square error over the testing data-set, our approach shows better performance than well-established reconstruction algorithms in the field of optoacustic tomography. A series of examples shows that this superior performance also holds with respect to other reconstruction image quality measures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Software-Defined Hardware  
dc.subject
Optoacoustic Imaging  
dc.subject
Deep Learning  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Model-based Fully Dense UNet for Image Enhancement in Software-defined Optoacoustic Tomography  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-08-14T10:58:02Z  
dc.journal.pagination
1-6  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: González, Martín Germán. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Model-based%20Fully%20Dense%20UNet%20for%20Image%20Enhancement%20in%20Software-defined%20Optoacoustic%20Tomography  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ARGENCON55245.2022.9940135  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
2022 IEEE Biennial Congress of Argentina  
dc.date.evento
2022-09-07  
dc.description.ciudadEvento
San Juan  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad Nacional de San Juan  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.libro
2022 IEEE Biennial Congress of Argentina  
dc.date.eventoHasta
2022-09-09  
dc.type
Congreso