Mostrar el registro sencillo del ítem
dc.contributor.author
González, Martín Germán

dc.contributor.author
Rey Vega, Leonardo Javier

dc.date.available
2023-08-23T11:03:02Z
dc.date.issued
2022
dc.identifier.citation
Model-based Fully Dense UNet for Image Enhancement in Software-defined Optoacoustic Tomography; 2022 IEEE Biennial Congress of Argentina; San Juan; Argentina; 2022; 1-6
dc.identifier.uri
http://hdl.handle.net/11336/208993
dc.description.abstract
A deep neural network architecture for improving the performance of a software-defined optoacoustic tomography device is presented. Our approach is a hybrid one, in the sense that a powerful data-driven architecture (a FD-UNet) is combined with a structure that exploits model-guided information, in the form of the forward and adjoint operators of the acoustic problem. Besides that, the findings of a previous work on the noise and other effects on the measured sinograms are also exploited, in order to make the structure more robust in the task of correcting the artifacts that are typically introduced in the reconstructed images. The proposed solution is numerically trained and evaluated. In terms of the average mean square error over the testing data-set, our approach shows better performance than well-established reconstruction algorithms in the field of optoacustic tomography. A series of examples shows that this superior performance also holds with respect to other reconstruction image quality measures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Software-Defined Hardware
dc.subject
Optoacoustic Imaging
dc.subject
Deep Learning
dc.subject.classification
Ingeniería Eléctrica y Electrónica

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Model-based Fully Dense UNet for Image Enhancement in Software-defined Optoacoustic Tomography
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-08-14T10:58:02Z
dc.journal.pagination
1-6
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: González, Martín Germán. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Model-based%20Fully%20Dense%20UNet%20for%20Image%20Enhancement%20in%20Software-defined%20Optoacoustic%20Tomography
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ARGENCON55245.2022.9940135
dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.coverage
Nacional
dc.type.subtype
Congreso
dc.description.nombreEvento
2022 IEEE Biennial Congress of Argentina
dc.date.evento
2022-09-07
dc.description.ciudadEvento
San Juan
dc.description.paisEvento
Argentina

dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad Nacional de San Juan
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
2022 IEEE Biennial Congress of Argentina
dc.date.eventoHasta
2022-09-09
dc.type
Congreso
Archivos asociados