Artículo
Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
Fecha de publicación:
12/2006
Editorial:
John Wiley & Sons Ltd
Revista:
Optimal Control Applications & Methods
ISSN:
0143-2087
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The problem of designing strategies for optimal feedback control of nonlinear processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against suboptimal bilinear-quadratic strategies based on power series expansions. Since state variables calculated from Hamiltonian equations may differ from the values of physical states, the proposed control strategy is suboptimal with respect to the original plant.
Palabras clave:
Optimal Control
,
Chemical Reactors
,
Nonlinear Systems
,
Hamilton Equations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Costanza, Vicente; Neuman, C. E.; Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem; John Wiley & Sons Ltd; Optimal Control Applications & Methods; 27; 1; 12-2006; 41-60
Compartir
Altmétricas