Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Estimation of urban methane concentration from remote sensor data

Stadler, Carla SofíaIcon ; Fusé, Victoria SusanaIcon ; Faramiñán, Adán Matías GabrielIcon ; Linares, SantiagoIcon ; Juliarena, María PaulaIcon
Tipo del evento: Congreso
Nombre del evento: 2022 IEEE Biennial Congress of Argentina
Fecha del evento: 07/09/2022
Institución Organizadora: Institute of Electrical and Electronics Engineers; Universidad Nacional de San Juan;
Título del Libro: 2022 IEEE Biennial Congress of Argentina
Editorial: Institute of Electrical and Electronics Engineers
ISBN: 978-1-6654-8014-7
Idioma: Español
Clasificación temática:
Ciencias Medioambientales

Resumen

Methane (CH4) is the second more important greenhouse gas (GHG), respecting its potential global warming. Although cities represent only 2% of the global surface, they are responsible for 70% of the GHGs emissions. Thus, it is necessary to study their atmospheric concentration variations to identify the main sources and mitigate their emissions. The main objective of this study is to estimate the CH4 urban concentration using satellite products. To do this, first the atmospheric CH4 concentration was analyzed in 16 sites in the city of Tandil (Argentina) for one year; thus, the observed data could be registered. It was found that in winter and autumn, the concentrations were higher than in summer and spring. Then, the data from Landsat 8 satellite were used to obtain the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Linear regression was applied, taking into account the seasonal CH4 concentration as the dependent variable, and the NDVI and LST as the independent variables. The adjusted R2 was 0.53, and the principal variable that affected the CH4 concentration was NDVI, which is related to urbanization. Finally, the mathematical expression from the regression was applied to obtain CH4 urban concentration, which allows us to analyze the temporal and spatial variations.
Palabras clave: METHANE , URBAN , REMOTE SENSING , NDVI , LST
Ver el registro completo
 
Archivos asociados
Tamaño: 1.014Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/208819
URL: https://ieeexplore.ieee.org/xpl/conhome/9939564/proceeding
URL: https://ieeexplore.ieee.org/document/9939822
DOI: http://dx.doi.org/10.1109/ARGENCON55245.2022.9939822
Colecciones
Eventos(CIFICEN)
Eventos de CENTRO DE INV. EN FISICA E INGENIERIA DEL CENTRO DE LA PCIA. DE BS. AS.
Eventos(IGEHCS)
Eventos de INSTITUTO DE GEOGRAFIA, HISTORIA Y CS. SOCIALES
Citación
Estimation of urban methane concentration from remote sensor data; 2022 IEEE Biennial Congress of Argentina; San Juán; Argentina; 2022; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES