Mostrar el registro sencillo del ítem

dc.contributor.author
Wang, Mingkang  
dc.contributor.author
Perez, Diego Javier  
dc.contributor.author
Lopez, Daniel  
dc.contributor.author
Aksyuk, Vladimir A.  
dc.date.available
2023-08-18T13:50:48Z  
dc.date.issued
2022-12  
dc.identifier.citation
Wang, Mingkang; Perez, Diego Javier; Lopez, Daniel; Aksyuk, Vladimir A.; Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators; American Physical Society; Physical Review X; 12; 4; 12-2022; 1-18  
dc.identifier.issn
2160-3308  
dc.identifier.uri
http://hdl.handle.net/11336/208679  
dc.description.abstract
Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro-and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-Tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nonlinear Dynamics  
dc.subject
MEMS resonators  
dc.subject
Mechanics  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-10T11:12:26Z  
dc.journal.volume
12  
dc.journal.number
4  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Wang, Mingkang. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina  
dc.description.fil
Fil: Lopez, Daniel. State University of Pennsylvania; Estados Unidos  
dc.description.fil
Fil: Aksyuk, Vladimir A.. National Institute Of Standards And Technology; Estados Unidos  
dc.journal.title
Physical Review X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevX.12.041025  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevX.12.041025