Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Oil yield components and biomass production responses to warming during the oil accumulation phase in young olive trees

Miserere, AndreaIcon ; Searles, Peter StoughtonIcon ; Rousseaux, Maria CeciliaIcon
Fecha de publicación: 01/2022
Editorial: Elsevier Science
Revista: Scientia Horticulturae
ISSN: 0304-4238
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Horticultura, Viticultura

Resumen

Global warming and olive expansion to new regions have increased interest in understanding how air temperature affects olive production. Thus, the objective of this study was to evaluate the responses of oil yield components, total biomass production, and its partitioning to a moderate temperature increase (3–4 °C) during the oil accumulation phase in young olive trees of two olive cultivars (cvs. Arbequina, Coratina). Young, potted olive trees were actively heated by 3–4 °C in open top chambers under outdoor conditions compared to near-ambient temperature in similar control chambers. The trees were warmed from final fruit set to the end of the oil accumulation phase (5 months) in one (2014–15 or 2015–16) or in two consecutive seasons. Oil yield and its components were obtained from fruit harvested at the end of the season, while the vegetative dry biomass produced was estimated from destructive harvests of entire trees before and after a warming period. Glucose equivalents (GE) were also calculated for both oil yield and vegetative growth. Warming during the oil accumulation phase in one season led to some significant temperature x cultivar interactions for oil components. Individual fruit dry weight was reduced by warming to a greater extent in cv. Coratina than in cv. Arbequina, while fruit oil concentration was decreased more in cv. Arbequina. Significant decreases in oil yield were also observed for both cultivars. Warmed trees had a greater net leaf area increase than control trees when heated during the oil accumulation phase for one season (2014–15 or 2015–16), and allocated more GE to vegetative organs than to fruit in 2015–16. However, total tree biomass was not affected by warming. Warming trees the first season led to reduced flowering the following spring, and directly contributed to a temperature x cultivar interaction for fruit number during the second warming period with a 66% reduction in fruit number in warmed trees of cv. Arbequina and very low fruit number in all cv. Coratina trees. In contrast to warming during one season, total tree biomass GE decreased across cultivars when warming was performed in the oil accumulation phase for two consecutive seasons. The results suggest that cultivars should be carefully selected for new, warmer growing regions and that global warming may ultimately reduce oil yields and affect cultivar selection.
Palabras clave: ARBEQUINA , CORATINA , GLOBAL WARMING , GLUCOSE EQUIVALENTS , OIL YIELD , TEMPERATURE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.151Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/208627
URL: https://linkinghub.elsevier.com/retrieve/pii/S0304423821007251
DOI: http://dx.doi.org/10.1016/j.scienta.2021.110618
Colecciones
Articulos(CRILAR)
Articulos de CENTRO REGIONAL DE INV. CIENTIFICAS Y TRANSFERENCIA TECNOLOGICA DE ANILLACO
Citación
Miserere, Andrea; Searles, Peter Stoughton; Rousseaux, Maria Cecilia; Oil yield components and biomass production responses to warming during the oil accumulation phase in young olive trees; Elsevier Science; Scientia Horticulturae; 291; 1-2022; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES