Artículo
The lattice of worker-quasi-stable matchings
Bonifacio, Agustín Germán
; Guiñazú, Nadia Cecilia
; Juarez, Noelia Mariel
; Neme, Pablo Alejandro
; Oviedo, Jorge Armando
Fecha de publicación:
09/2022
Editorial:
Academic Press Inc Elsevier Science
Revista:
Games and Economic Behavior
ISSN:
0899-8256
e-ISSN:
1090-2473
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In a many-to-one matching model, we study the set of worker-quasi-stable matchings when firms' choice functions satisfy substitutability. Worker-quasi-stability is a relaxation of stability that allows blocking pairs involving a firm and an unemployed worker. We show that this set has a lattice structure and define a Tarski operator on this lattice that models a re-equilibration process and has the set of stable matchings as its fixed points.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Bonifacio, Agustín Germán; Guiñazú, Nadia Cecilia; Juarez, Noelia Mariel; Neme, Pablo Alejandro; Oviedo, Jorge Armando; The lattice of worker-quasi-stable matchings; Academic Press Inc Elsevier Science; Games and Economic Behavior; 135; 9-2022; 188-200
Compartir
Altmétricas