Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Trunk detection in tree crops using RGB-D images for structure-based ICM-SLAM

Gimenez Romero, Javier AlejandroIcon ; Sansoni, SebastianIcon ; Tosetti Sanz, Santiago RamonIcon ; Capraro Fuentes, Flavio AndresIcon ; Carelli Albarracin, Ricardo OscarIcon
Fecha de publicación: 08/2022
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

Agricultural environments with tree plantations usually present a regular structure that can be used by SLAM systems to improve self-location, and therefore, facilitate the autonomous navigation. In this context, tree trunks are natural landmarks that can be used to incorporate the environment structure into the problem modeling. This article presents a trunk detector solely based on RGB-D data obtained from a frontal-view stereo camera, and a SLAM system that incorporates the regular tree distribution of these crops. The trunk detector can be adapted to similar agricultural environments because its parameters have specific geometric meanings, which differentiates it from black box-type procedures. The structure-based SLAM system has theoretical and practical advantages over the well-known SLAM procedures in the mentioned context. This proposal can be executed on-line and is experimentally tested with databases obtained from a challenging agricultural environment. Results show a good performance and robustness when the database is spatially or temporally subsampled, even under adverse lighting conditions.
Palabras clave: ICM-SLAM , AGRICULTURAL ENVIRONMENTS , TREE CROPS , RGB-D DATA
Ver el registro completo
 
Archivos asociados
Tamaño: 8.234Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/208565
URL: https://www.sciencedirect.com/science/article/pii/S0168169922004161
DOI: https://doi.org/10.1016/j.compag.2022.107099
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gimenez Romero, Javier Alejandro; Sansoni, Sebastian; Tosetti Sanz, Santiago Ramon; Capraro Fuentes, Flavio Andres; Carelli Albarracin, Ricardo Oscar; Trunk detection in tree crops using RGB-D images for structure-based ICM-SLAM; Elsevier; Computers and Eletronics in Agriculture; 199; 107099; 8-2022; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES