Artículo
Conformal Killing forms on 2-step nilpotent Riemannian Lie groups
Fecha de publicación:
07/2021
Editorial:
De Gruyter
Revista:
Forum Mathematicum
ISSN:
0933-7741
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study left-invariant conformal Killing 2-or 3-forms on simply connected 2-step nilpotent Riemannian Lie groups. We show that if the center of the group is of dimension greater than or equal to 4, then every such form is automatically coclosed (i.e. it is a Killing form). In addition, we prove that the only Riemannian 2-step nilpotent Lie groups with center of dimension at most 3 and admitting left-invariant non-coclosed conformal Killing 2- A nd 3-forms are the following: The Heisenberg Lie groups and their trivial 1-dimensional extensions, endowed with any left-invariant metric, and the simply connected Lie group corresponding to the free 2-step nilpotent Lie algebra on 3 generators, with a particular 1-parameter family of metrics. The explicit description of the space of conformal Killing 2- A nd 3-forms is provided in each case.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
del Barco, Viviana Jorgelina; Moroianu, Andrei; Conformal Killing forms on 2-step nilpotent Riemannian Lie groups; De Gruyter; Forum Mathematicum; 33; 5; 7-2021; 1331-1347
Compartir
Altmétricas