Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing recommender system with collaborative filtering and user experiences filtering

Aciar, Silvana VanesaIcon ; Fabregat, Ramón; Jové, Teodor; Aciar, Gabriela
Fecha de publicación: 12/2021
Editorial: Multidisciplinary Digital Publishing Institute
Revista: Applied Sciences (Switzerland)
ISSN: 2076-3417
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Recommender systems have become an essential part in many applications and websites to address the information overload problem. For example, people read opinions about recommended products before buying them. This action is time‐consuming due to the number of opinions available. It is necessary to provide recommender systems with methods that add information about the experiences of other users, along with the presentation of the recommended products. These methods should help users by filtering reviews and presenting the necessary answers to their ques-tions about recommended products. The contribution of this work is the description of a recom-mender system that recommends products using a collaborative filtering method, and which adds only relevant feedback from other users about recommended products. A prototype of a hotel rec-ommender system was implemented and validated with real users.
Palabras clave: COLLABORATIVE FILTERING , OPINION MINING , RECOMMENDER SYSTEM , USER EXPERIENCE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.062Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/208317
URL: https://www.mdpi.com/2076-3417/11/24/11890
DOI: https://doi.org/10.3390/app112411890
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Citación
Aciar, Silvana Vanesa; Fabregat, Ramón; Jové, Teodor; Aciar, Gabriela; Enhancing recommender system with collaborative filtering and user experiences filtering; Multidisciplinary Digital Publishing Institute; Applied Sciences (Switzerland); 11; 24; 12-2021; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES