Mostrar el registro sencillo del ítem
dc.contributor.author
Véliz, Maximiliano Ezequiel
dc.contributor.author
Real, Gustavo Ernesto
dc.contributor.author
Otero, Alejandro Daniel
dc.date.available
2023-08-15T10:08:05Z
dc.date.issued
2022
dc.identifier.citation
Embedded Electrical Energy Measurement System Based on the M90E36A for Detecting High-Frequency Features in Household Appliances; 2022 IEEE Biennial Congress of Argentina; San Juan; Argentina; 2022; 1-7
dc.identifier.uri
http://hdl.handle.net/11336/208236
dc.description.abstract
In the state of the art of non-invasive load monitoring study, there are several proposals for the elaboration of datasets of electrical appliance consumption at different test frequencies, which allow the implementation of strategies and algorithms for energy monitoring. This paper presents an high-frequency electrical energy measurement system and digital signal processing to obtain non-conventional features that may be relevant for the study of energy disaggregation in real time.The system consists of the Atmel-DB board, based on the Atmel M90E36A integrated circuit, with channels for three-phase voltage and current measurement, a data acquisition board with an Arduino DUE for communication and a Raspberry Pi running the user interface and high frequency DSP. After a detailed description of the system, an application example is presented where high frequency signal processing is developed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
embedded system
dc.subject
energy disaggregation
dc.subject
high-frequency data
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Embedded Electrical Energy Measurement System Based on the M90E36A for Detecting High-Frequency Features in Household Appliances
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-08-14T11:17:31Z
dc.journal.pagination
1-7
dc.journal.pais
Argentina
dc.journal.ciudad
San Juan
dc.description.fil
Fil: Véliz, Maximiliano Ezequiel. Universidad Nacional de Hurlingham.; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.description.fil
Fil: Real, Gustavo Ernesto. Universidad Nacional de Hurlingham.; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.description.fil
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9939933
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
2022 IEEE Biennial Congress of Argentina
dc.date.evento
2022-09-07
dc.description.ciudadEvento
San Juan
dc.description.paisEvento
Argentina
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.description.institucionOrganizadora
Universidad Nacional de San Juan
dc.source.libro
2022 IEEE Biennial Congress of Argentina
dc.date.eventoHasta
2022-09-09
dc.type
Congreso
Archivos asociados