Mostrar el registro sencillo del ítem

dc.contributor.author
Picot, Marine  
dc.contributor.author
Messina, Francisco Javier  
dc.contributor.author
Labeau, Fabrice  
dc.contributor.author
Piantanida, Pablo  
dc.date.available
2023-08-15T10:04:23Z  
dc.date.issued
2022  
dc.identifier.citation
Robust Autoencoder-based State Estimation in Power Systems; 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference; Estados Unidos; 2022; 1-5  
dc.identifier.uri
http://hdl.handle.net/11336/208235  
dc.description.abstract
Smart Grids are critical cyber-physical systems where monitoring is crucial, especially the process of state estimation. Since this task strongly depends on the reliability of power grid meters and their communication channels, it is vulnerable to cyber-attacks and, particularly, false data injection attacks (FDIAs), which are modifications on the meter readings that are often hard to detect. In this paper, we propose a method to construct a robust state estimator based on a variational autoencoder trained on the Fisher-Rao distance, which is a measure of dissimilarity between probability distributions. Then, we introduce a novel method to generate FDIAs that exploits knowledge of the state estimator and its learning procedure, for which we show effectiveness. Finally, numerical results and comparison with state-of-the-art methods confirm that our approach can archive similar estimation errors for clean and noisy (attacked) measurements.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SMART GRIDS  
dc.subject
FALSE DATA INJECTION ATTACKS  
dc.subject
ROBUSTNESS  
dc.subject
AUTOENCODER  
dc.subject
STATE ESTIMATION  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Robust Autoencoder-based State Estimation in Power Systems  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-08-14T11:19:19Z  
dc.journal.pagination
1-5  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Picot, Marine. Universite Paris-Saclay;  
dc.description.fil
Fil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Labeau, Fabrice. McGill University; Canadá  
dc.description.fil
Fil: Piantanida, Pablo. Universite Paris-Saclay;  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9817514  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference  
dc.date.evento
2022-04-24  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.libro
2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference  
dc.date.eventoHasta
2022-04-28  
dc.type
Conferencia