Mostrar el registro sencillo del ítem
dc.contributor.author
Picot, Marine
dc.contributor.author
Messina, Francisco Javier
dc.contributor.author
Labeau, Fabrice
dc.contributor.author
Piantanida, Pablo
dc.date.available
2023-08-15T10:04:23Z
dc.date.issued
2022
dc.identifier.citation
Robust Autoencoder-based State Estimation in Power Systems; 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference; Estados Unidos; 2022; 1-5
dc.identifier.uri
http://hdl.handle.net/11336/208235
dc.description.abstract
Smart Grids are critical cyber-physical systems where monitoring is crucial, especially the process of state estimation. Since this task strongly depends on the reliability of power grid meters and their communication channels, it is vulnerable to cyber-attacks and, particularly, false data injection attacks (FDIAs), which are modifications on the meter readings that are often hard to detect. In this paper, we propose a method to construct a robust state estimator based on a variational autoencoder trained on the Fisher-Rao distance, which is a measure of dissimilarity between probability distributions. Then, we introduce a novel method to generate FDIAs that exploits knowledge of the state estimator and its learning procedure, for which we show effectiveness. Finally, numerical results and comparison with state-of-the-art methods confirm that our approach can archive similar estimation errors for clean and noisy (attacked) measurements.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SMART GRIDS
dc.subject
FALSE DATA INJECTION ATTACKS
dc.subject
ROBUSTNESS
dc.subject
AUTOENCODER
dc.subject
STATE ESTIMATION
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Robust Autoencoder-based State Estimation in Power Systems
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-08-14T11:19:19Z
dc.journal.pagination
1-5
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Picot, Marine. Universite Paris-Saclay;
dc.description.fil
Fil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Labeau, Fabrice. McGill University; Canadá
dc.description.fil
Fil: Piantanida, Pablo. Universite Paris-Saclay;
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9817514
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference
dc.date.evento
2022-04-24
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference
dc.date.eventoHasta
2022-04-28
dc.type
Conferencia
Archivos asociados