Mostrar el registro sencillo del ítem

dc.contributor.author
Bänsch, Eberhard  
dc.contributor.author
Morin, Pedro  
dc.date.available
2023-08-14T17:34:33Z  
dc.date.issued
2021-05  
dc.identifier.citation
Bänsch, Eberhard; Morin, Pedro; Convective Transport in Nanofluids: Regularity of Solutions and Error Estimates for Finite Element Approximations; Birkhauser Verlag Ag; Journal Of Mathematical Fluid Mechanics; 23; 2; 5-2021; 1-17  
dc.identifier.issn
1422-6928  
dc.identifier.uri
http://hdl.handle.net/11336/208186  
dc.description.abstract
We study the stationary version of a thermodynamically consistent variant of the Buongiorno model describing convective transport in nanofluids. Under some smallness assumptions it is proved that there exist regular solutions. Based on this regularity result, error estimates, both in the natural norm as well as in weaker norms for finite element approximations can be shown. The proofs are based on the theory developed by Caloz and Rappaz for general nonlinear, smooth problems. Computational results confirm the theoretical findings.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
35B65  
dc.subject
35K55  
dc.subject
65N30  
dc.subject
ERROR ESTIMATES  
dc.subject
FINITE ELEMENTS  
dc.subject
HEAT TRANSFER  
dc.subject
LP ESTIMATES  
dc.subject
NANOFLUID  
dc.subject
REGULARITY  
dc.subject
THERMOPHORESIS  
dc.subject
WEAK SOLUTION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Convective Transport in Nanofluids: Regularity of Solutions and Error Estimates for Finite Element Approximations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-10T17:54:32Z  
dc.journal.volume
23  
dc.journal.number
2  
dc.journal.pagination
1-17  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Bänsch, Eberhard. Universitat Erlangen-Nuremberg; Alemania  
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.journal.title
Journal Of Mathematical Fluid Mechanics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00021-020-00554-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00021-020-00554-y