Mostrar el registro sencillo del ítem

dc.contributor.author
Tiglio, Manuel  
dc.contributor.author
Villanueva, Uziel Aarón  
dc.date.available
2023-08-11T18:55:09Z  
dc.date.issued
2021-07  
dc.identifier.citation
Tiglio, Manuel; Villanueva, Uziel Aarón; On the stability and accuracy of the empirical interpolation method and gravitational wave surrogates; IOP Publishing; Classical and Quantum Gravity; 38; 13; 7-2021; 1-17  
dc.identifier.issn
0264-9381  
dc.identifier.uri
http://hdl.handle.net/11336/208034  
dc.description.abstract
The combination of the reduced basis and the empirical interpolation method (EIM) approaches have produced outstanding results in many disciplines. In particular, in gravitational wave (GW) science these results range from building non-intrusive surrogate models for GWs to fast parameter estimation adding the use of reduced order quadratures. These surrogates have the salient feature of being essentially indistinguishable from or very close to supercomputer simulations of the Einstein equations, but can be evaluated in the order of a millisecond per multipole mode on a standard laptop. In this article we clarify a common misperception of the EIM as originally introduced and used in practice in GW science. Namely, we prove that the EIM at each iteration chooses the interpolation nodes so as to make the related Vandermonde-type matrix as invertible as possible; not necessarily optimizing its conditioning or accuracy of the interpolant as is sometimes thought. In fact, we introduce two new variations of the EIM, nested as well, which do optimize with respect to conditioning and the Lebesgue constant, respectively, and compare them through numerical experiments with the original EIM using GWs. Our analyses and numerical results suggest a subtle relationship between solving for the original EIM, conditioning, and the Lebesgue constant, in consonance with active research in rigorous approximation theory and related fields.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EMPIRICAL INTERPOLATION METHOD  
dc.subject
GRAVITATIONAL WAVES  
dc.subject
MACHINE LEARNING  
dc.subject
REDUCED BASIS  
dc.subject
REDUCED ORDER MODELING  
dc.subject
SURROGATE MODELS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the stability and accuracy of the empirical interpolation method and gravitational wave surrogates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-11T14:53:37Z  
dc.journal.volume
38  
dc.journal.number
13  
dc.journal.pagination
1-17  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Tiglio, Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.journal.title
Classical and Quantum Gravity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/abf894  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-6382/abf894