Mostrar el registro sencillo del ítem

dc.contributor.author
Ali, Ali Hasan  
dc.contributor.author
Meften, Ghazi Abed  
dc.contributor.author
Bazighifan, Omar  
dc.contributor.author
Iqbal, Mehak  
dc.contributor.author
Elaskar, Sergio Amado  
dc.contributor.author
Awrejcewicz, Jan  
dc.date.available
2023-08-11T17:01:29Z  
dc.date.issued
2022-03-25  
dc.identifier.citation
Ali, Ali Hasan; Meften, Ghazi Abed; Bazighifan, Omar; Iqbal, Mehak; Elaskar, Sergio Amado; et al.; A study of continuous dependence and symmetric properties of double diffusive convection: Forchheimer model; MDPI; Symmetry; 14; 4; 25-3-2022; 1-18  
dc.identifier.uri
http://hdl.handle.net/11336/207994  
dc.description.abstract
In this recent work, the continuous dependence of double diffusive convection was studied theoretically in a porous medium of the Forchheimer model along with a variable viscosity. The analysis depicts that the density of saturating fluid under consideration shows a linear relationship with its concentration and a cubic dependence on the temperature. In this model, the equations for convection fluid motion were examined when viscosity changed with temperature linearly. This problem allowed the possibility of resonance between internal layers in thermal convection. Furthermore, we investigated the continuous dependence of this solution based on the changes in viscosity. Throughout the paper, we found an “a priori estimate” with coefficients that relied only on initial values, boundary data, and the geometry of the problem that demonstrated the continuous dependence of the solution on changes in the viscosity, which also helped us to state the relationship between the continuous dependence of the solution and the changes in viscosity. Moreover, we deduced a convergence result based on the Forchheimer model at the stage when the variable viscosity trends toward a constant value by assuming a couple of solutions to the boundary-initial-value problems and defining a difference solution of variables that satisfy a given boundary-initial-value problem.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONVERGENCE  
dc.subject
DOUBLE DIFFUSIVE  
dc.subject
FORCHHEIMER MODEL  
dc.subject
SALINIZATION  
dc.subject
STABILITY  
dc.subject
VARIABLE VISCOSITY  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A study of continuous dependence and symmetric properties of double diffusive convection: Forchheimer model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T12:50:43Z  
dc.identifier.eissn
2073-8994  
dc.journal.volume
14  
dc.journal.number
4  
dc.journal.pagination
1-18  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Ali, Ali Hasan. University Of Basrah; Iraq  
dc.description.fil
Fil: Meften, Ghazi Abed. University Of Basrah; Iraq  
dc.description.fil
Fil: Bazighifan, Omar. International Telematic University Uninettuno; Italia. Seiyun University; Yemen. Hadhramout University Of Science And Technology; Yemen  
dc.description.fil
Fil: Iqbal, Mehak. University Of Debrecen; Hungría  
dc.description.fil
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina  
dc.description.fil
Fil: Awrejcewicz, Jan. Lodz University of Technology; Polonia  
dc.journal.title
Symmetry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/14/4/682  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/sym14040682