Mostrar el registro sencillo del ítem
dc.contributor.author
Ali, Ali Hasan
dc.contributor.author
Meften, Ghazi Abed
dc.contributor.author
Bazighifan, Omar
dc.contributor.author
Iqbal, Mehak
dc.contributor.author
Elaskar, Sergio Amado
dc.contributor.author
Awrejcewicz, Jan
dc.date.available
2023-08-11T17:01:29Z
dc.date.issued
2022-03-25
dc.identifier.citation
Ali, Ali Hasan; Meften, Ghazi Abed; Bazighifan, Omar; Iqbal, Mehak; Elaskar, Sergio Amado; et al.; A study of continuous dependence and symmetric properties of double diffusive convection: Forchheimer model; MDPI; Symmetry; 14; 4; 25-3-2022; 1-18
dc.identifier.uri
http://hdl.handle.net/11336/207994
dc.description.abstract
In this recent work, the continuous dependence of double diffusive convection was studied theoretically in a porous medium of the Forchheimer model along with a variable viscosity. The analysis depicts that the density of saturating fluid under consideration shows a linear relationship with its concentration and a cubic dependence on the temperature. In this model, the equations for convection fluid motion were examined when viscosity changed with temperature linearly. This problem allowed the possibility of resonance between internal layers in thermal convection. Furthermore, we investigated the continuous dependence of this solution based on the changes in viscosity. Throughout the paper, we found an “a priori estimate” with coefficients that relied only on initial values, boundary data, and the geometry of the problem that demonstrated the continuous dependence of the solution on changes in the viscosity, which also helped us to state the relationship between the continuous dependence of the solution and the changes in viscosity. Moreover, we deduced a convergence result based on the Forchheimer model at the stage when the variable viscosity trends toward a constant value by assuming a couple of solutions to the boundary-initial-value problems and defining a difference solution of variables that satisfy a given boundary-initial-value problem.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONVERGENCE
dc.subject
DOUBLE DIFFUSIVE
dc.subject
FORCHHEIMER MODEL
dc.subject
SALINIZATION
dc.subject
STABILITY
dc.subject
VARIABLE VISCOSITY
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A study of continuous dependence and symmetric properties of double diffusive convection: Forchheimer model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-06T12:50:43Z
dc.identifier.eissn
2073-8994
dc.journal.volume
14
dc.journal.number
4
dc.journal.pagination
1-18
dc.journal.pais
Suiza
dc.description.fil
Fil: Ali, Ali Hasan. University Of Basrah; Iraq
dc.description.fil
Fil: Meften, Ghazi Abed. University Of Basrah; Iraq
dc.description.fil
Fil: Bazighifan, Omar. International Telematic University Uninettuno; Italia. Seiyun University; Yemen. Hadhramout University Of Science And Technology; Yemen
dc.description.fil
Fil: Iqbal, Mehak. University Of Debrecen; Hungría
dc.description.fil
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
dc.description.fil
Fil: Awrejcewicz, Jan. Lodz University of Technology; Polonia
dc.journal.title
Symmetry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/14/4/682
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/sym14040682
Archivos asociados