Artículo
On A-Parallelism and A-Birkhoff–James Orthogonality of Operators
Fecha de publicación:
12/2021
Editorial:
Springer
Revista:
Results In Mathematics
ISSN:
1422-6383
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we establish several characterizations of the A-parallelism of bounded linear operators with respect to the seminorm induced by a positive operator A acting on a complex Hilbert space. Among other things, we investigate the relationship between A-seminorm-parallelism and A-Birkhoff–James orthogonality of A-bounded operators. In particular, we characterize A-bounded operators which satisfy the A-Daugavet equation. In addition, we relate the A-Birkhoff–James orthogonality of operators to the distance formulas and we give an explicit formula of the center mass for A-bounded operators. Some other related results are also discussed.
Palabras clave:
NUMERICAL RADIUS
,
ORTHOGONALITY
,
PARALLELISM
,
POSITIVE OPERATOR
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Feki, Kais; On A-Parallelism and A-Birkhoff–James Orthogonality of Operators; Springer; Results In Mathematics; 76; 4; 12-2021; 1-27
Compartir
Altmétricas