Mostrar el registro sencillo del ítem
dc.contributor.author
Cocucci, Tadeo Javier
dc.contributor.author
Pulido, Manuel Arturo
dc.contributor.author
Aparicio, Juan Pablo
dc.contributor.author
Ruiz, Juan Jose
dc.contributor.author
Simoy, Mario Ignacio
dc.contributor.author
Rosa, Santiago
dc.date.available
2023-08-10T12:45:36Z
dc.date.issued
2022-03
dc.identifier.citation
Cocucci, Tadeo Javier; Pulido, Manuel Arturo; Aparicio, Juan Pablo; Ruiz, Juan Jose; Simoy, Mario Ignacio; et al.; Inference in epidemiological agent-based models using ensemble-based data assimilation; Public Library of Science; Plos One; 17; 3-2022; 1-28
dc.identifier.issn
1932-6203
dc.identifier.uri
http://hdl.handle.net/11336/207756
dc.description.abstract
To represent the complex individual interactions in the dynamics of disease spread informed by data, the coupling of an epidemiological agent-based model with the ensemble Kalman filter is proposed. The statistical inference of the propagation of a disease by means of ensemble-based data assimilation systems has been studied in previous works. The models used are mostly compartmental models representing the mean field evolution through ordinary differential equations. These techniques allow to monitor the propagation of the infections from data and to estimate several parameters of epidemiological interest. However, there are many important features which are based on the individual interactions that cannot be represented in the mean field equations, such as social network and bubbles, contact tracing, isolating individuals in risk, and social network-based distancing strategies. Agent-based models can describe contact networks at an individual level, including demographic attributes such as age, neighborhood, household, workplaces, schools, entertainment places, among others. Nevertheless, these models have several unknown parameters which are thus difficult to prescribe. In this work, we propose the use of ensemble-based data assimilation techniques to calibrate an agent-based model using daily epidemiological data. This raises the challenge of having to adapt the agent populations to incorporate the information provided by the coarse-grained data. To do this, two stochastic strategies to correct the model predictions are developed. The ensemble Kalman filter with perturbed observations is used for the joint estimation of the state and some key epidemiological parameters. We conduct experiments with an agent based-model designed for COVID-19 and assess the proposed methodology on synthetic data and on COVID-19 daily reports from Ciudad Autónoma de Buenos Aires, Argentina.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Modelos basados en agentes
dc.subject
Asimilación de datos
dc.subject
Epidemiología
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Inference in epidemiological agent-based models using ensemble-based data assimilation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-06-26T13:35:38Z
dc.journal.volume
17
dc.journal.pagination
1-28
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Cocucci, Tadeo Javier. Universidad Nacional del Nordeste; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.description.fil
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
dc.description.fil
Fil: Simoy, Mario Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto Multidisciplinario de Ecosistemas y Desarrollo Sustentable; Argentina
dc.description.fil
Fil: Rosa, Santiago. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Plos One
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dx.plos.org/10.1371/journal.pone.0264892
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0264892
Archivos asociados