Artículo
A variety of algebras closely related to subordination algebras
Fecha de publicación:
08/2022
Editorial:
Taylor & Francis Ltd
Revista:
Journal Of Applied Non-classical Logics
ISSN:
1166-3081
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce a variety of algebras in the language of Boolean algebras with an extra implication, namely the variety of pseudo-subordination algebras, which is closely related to subordination algebras. We believe it provides a minimal general algebraic framework where to place and systematise the research on classes of algebras related to several kinds of subordination algebras. We also consider the subvariety of pseudo-contact algebras, related to contact algebras, and the subvariety of the strict implication algebras introduced in Bezhanishvili et al. [(2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170, 102714]. The variety of pseudo-subordination algebras is term equivalent to the variety of Boolean algebras with a binary modal operator. We exploit this fact in our study. In particular, to obtain a topological duality from which we derive the known topological dualities for subordination algebras and contact algebras.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; Jansana Ferrer, Ramon; A variety of algebras closely related to subordination algebras; Taylor & Francis Ltd; Journal Of Applied Non-classical Logics; 32; 2-3; 8-2022; 200-238
Compartir
Altmétricas