Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Demand estimation under the multinomial logit model from sales transaction data

Tarek Abdallah; Vulcano, GustavoIcon
Fecha de publicación: 09/2021
Editorial: Informs
Revista: M&som-manufacturing & Service Operations Management
ISSN: 1523-4614
e-ISSN: 1526-5498
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Economía, Econometría

Resumen

Problem definition: A major task in retail operations is to optimize the assortments exhibited to consumers. To this end, retailers need to understand customers' preferences for different products. Academic/practical relevance: This is particularly challenging when only sales and product-availability data are recorded, and not all products are displayed in all periods. Similarly, in revenue management contexts, firms (airlines, hotels, etc.) need to understand customers' preferences for different options in order to optimize the menu of products to offer. Methodology: In this paper, we study the estimation of preferences under a multinomial logit model of demand when customers arrive over time in accordance with a nonhomogeneous Poisson process. This model has recently caught important attention in both academic and industrial practices. We formulate the problem as a maximum-likelihood estimation problem, which turns out to be nonconvex. Results: Our contribution is twofold: From a theoretical perspective, we characterize conditions under which the maximum-likelihood estimates are unique and the model is identifiable. From a practical perspective, we propose a minorization-maximization (MM) algorithm to ease the optimization of the likelihood function. Through an extensive numerical study, we show that our algorithm leads to better estimates in a noticeably short computational time compared with state-of-the-art benchmarks. Managerial implications: The theoretical results provide a solid foundation for the use of the model in terms of the quality of the derived estimates. At the same time, the fast MM algorithm allows the implementation of the model and the estimation procedure at large scale, compatible with real industrial applications.
Palabras clave: CHOICE BEHAVIOR , DEMAND UNCENSORING , EXPECTATION-MAXIMIZATION (EM) ALGORITHM , MAXIMUM-LIKELIHOOD (ML) ESTIMATION , MINORIZATION-MAXIMIZATION (MM) ALGORITHM , RETAIL OPERATIONS , REVENUE MANAGEMENT
Ver el registro completo
 
Archivos asociados
Tamaño: 1.721Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/207564
DOI: https://doi.org/10.1287/msom.2020.0878
URL: https://pubsonline.informs.org/doi/10.1287/msom.2020.0878
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Tarek Abdallah; Vulcano, Gustavo; Demand estimation under the multinomial logit model from sales transaction data; Informs; M&som-manufacturing & Service Operations Management; 23; 5; 9-2021; 1196-1216
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES