Artículo
An overview of the sugarcane mosaic disease in South America
Perera, María Francisca
; Filippone, María Paula
; Noguera, Aldo Sergio; Cuenya, María Inés
; Castagnaro, Atilio Pedro
Fecha de publicación:
02/2012
Editorial:
Global Science Books
Revista:
Functional Plant Science and Biotechnology
ISSN:
1749-0472
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Sugarcane mosaic, one of the most important viral diseases of sugarcane, is widely distributed in the world and its economic significance varies among regions. Economic losses depend on varietal susceptibility, virus strains, interaction with other diseases, vector population and environmental conditions. Although not a major problem in some countries, sugarcane mosaic has caused substantial yield losses in other countries (Argentina, Brazil) due to severe outbreaks. Numerous strains of Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus(SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus of the family Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange.
Palabras clave:
MOSAIC VIRUS
,
SUGARCANE
,
VIRAL DISEASES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Perera, María Francisca; Filippone, María Paula; Noguera, Aldo Sergio; Cuenya, María Inés; Castagnaro, Atilio Pedro; An overview of the sugarcane mosaic disease in South America; Global Science Books; Functional Plant Science and Biotechnology; 6; 2; 2-2012; 98-107
Compartir