Mostrar el registro sencillo del ítem
dc.contributor.author
Mroginski, Javier Luis
dc.contributor.author
Castro, Hugo Guillermo
dc.date.available
2023-08-07T17:44:53Z
dc.date.issued
2016
dc.identifier.citation
About speedup improvement of classical genetic algoritms using CUDA environment; XXII Congreso de Métodos Numéricos y sus Aplicaciones; Córdoba; Argentina; 2016; 3295-3295
dc.identifier.issn
2591-3522
dc.identifier.uri
http://hdl.handle.net/11336/207249
dc.description.abstract
Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Asociación Argentina de Mecánica Computacional
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
METAHEURISTIC OPTIMIZATION
dc.subject
CUDA
dc.subject
C++
dc.subject
HPC
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
About speedup improvement of classical genetic algoritms using CUDA environment
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-11-01T22:31:43Z
dc.journal.volume
XXXIV
dc.journal.number
48
dc.journal.pagination
3295-3295
dc.journal.pais
Argentina
dc.journal.ciudad
Santa Fe
dc.description.fil
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5203
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Congreso
dc.description.nombreEvento
XXII Congreso de Métodos Numéricos y sus Aplicaciones
dc.date.evento
2016-11-08
dc.description.ciudadEvento
Córdoba
dc.description.paisEvento
Argentina
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Universidad Tecnológica Nacional. Facultad Regional Córdoba
dc.description.institucionOrganizadora
Asociación Argentina de Mecánica Computacional
dc.source.revista
Mecánica Computacional
dc.date.eventoHasta
2016-11-11
dc.type
Congreso
Archivos asociados