Mostrar el registro sencillo del ítem
dc.contributor.author
Charó, Gisela Daniela
dc.contributor.author
Artana, Guillermo Osvaldo
dc.contributor.author
Sciamarella, Denisse
dc.date.available
2023-08-07T16:10:32Z
dc.date.issued
2021-06
dc.identifier.citation
Charó, Gisela Daniela; Artana, Guillermo Osvaldo; Sciamarella, Denisse; Topological colouring of fluid particles unravels finite-time coherent sets; Cambridge University Press; Journal of Fluid Mechanics; 923; 17; 6-2021; 1-28
dc.identifier.issn
0022-1120
dc.identifier.uri
http://hdl.handle.net/11336/207247
dc.description.abstract
This work describes the application of a technique that extracts branched manifolds from time series to study numerically generated fluid particle behaviour in the wake past a cylinder performing a rotary oscillation at low Reynolds numbers, and compares it with the results obtained for a paradigmatic analytical model of Lagrangian motion: the driven double gyre. The approach does not require prior knowledge of the underlying equations defining the dataset. The time series taken as input corresponds to the evolution of a position coordinate of an individual fluid particle. A delay embedding is used to reconstruct the dynamics in phase space, and a cell complex is built to characterize the topology of the embedding. Fluid particles are said to belong to the same topological class when the Betti numbers, orientability chains and weak boundaries of the associated cell complexes coincide. Topological colouring consists of labelling or 'colouring' advected particles with the topological class obtained in their finite-time analyses. The results suggest that topological colouring can be used to distinguish between regions of the flow where trajectories exhibit different finite-time dynamics.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cambridge University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHAOTIC ADVECTION
dc.subject
GENERAL FLUID MECHANICS
dc.subject
NONLINEAR DYNAMICAL SYSTEMS
dc.subject.classification
Otras Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Topological colouring of fluid particles unravels finite-time coherent sets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-07T12:24:36Z
dc.journal.volume
923
dc.journal.number
17
dc.journal.pagination
1-28
dc.journal.pais
Reino Unido
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Charó, Gisela Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia
dc.journal.title
Journal of Fluid Mechanics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/topological-colouring-of-fluid-particles-unravels-finitetime-coherent-sets/5993BB65A00DD24EA8ABFCA624A50CF8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1017/jfm.2021.561
Archivos asociados