Mostrar el registro sencillo del ítem

dc.contributor.author
Charó, Gisela Daniela  
dc.contributor.author
Artana, Guillermo Osvaldo  
dc.contributor.author
Sciamarella, Denisse  
dc.date.available
2023-08-07T16:10:32Z  
dc.date.issued
2021-06  
dc.identifier.citation
Charó, Gisela Daniela; Artana, Guillermo Osvaldo; Sciamarella, Denisse; Topological colouring of fluid particles unravels finite-time coherent sets; Cambridge University Press; Journal of Fluid Mechanics; 923; 17; 6-2021; 1-28  
dc.identifier.issn
0022-1120  
dc.identifier.uri
http://hdl.handle.net/11336/207247  
dc.description.abstract
This work describes the application of a technique that extracts branched manifolds from time series to study numerically generated fluid particle behaviour in the wake past a cylinder performing a rotary oscillation at low Reynolds numbers, and compares it with the results obtained for a paradigmatic analytical model of Lagrangian motion: the driven double gyre. The approach does not require prior knowledge of the underlying equations defining the dataset. The time series taken as input corresponds to the evolution of a position coordinate of an individual fluid particle. A delay embedding is used to reconstruct the dynamics in phase space, and a cell complex is built to characterize the topology of the embedding. Fluid particles are said to belong to the same topological class when the Betti numbers, orientability chains and weak boundaries of the associated cell complexes coincide. Topological colouring consists of labelling or 'colouring' advected particles with the topological class obtained in their finite-time analyses. The results suggest that topological colouring can be used to distinguish between regions of the flow where trajectories exhibit different finite-time dynamics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHAOTIC ADVECTION  
dc.subject
GENERAL FLUID MECHANICS  
dc.subject
NONLINEAR DYNAMICAL SYSTEMS  
dc.subject.classification
Otras Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Topological colouring of fluid particles unravels finite-time coherent sets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-07T12:24:36Z  
dc.journal.volume
923  
dc.journal.number
17  
dc.journal.pagination
1-28  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Charó, Gisela Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Journal of Fluid Mechanics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/topological-colouring-of-fluid-particles-unravels-finitetime-coherent-sets/5993BB65A00DD24EA8ABFCA624A50CF8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1017/jfm.2021.561