Artículo
Final velocity and radiated energy in numerical simulations of binary black holes
Fecha de publicación:
02/2022
Editorial:
American Physical Society
Revista:
Physical Review D
ISSN:
2470-0010
e-ISSN:
2470-0029
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The evolution of global binary black holes variables such as energy or linear momentum are mainly obtained by applying numerical methods near coalescence, post-Newtonian (PN) expansions, or a combination of both. In this paper, we use a fully relativistic formalism presented several years ago that only uses global variables defined at null infinity together with the gravitational radiation emitted by the source to obtain the time evolution of such variables for binary black holes (BBH) systems. For that, we use the Rochester catalog composed of 776 BBHs simulations. We compute the final velocity, radiated energy, and intrinsic angular momentum predicted by the dynamical equations in this formalism for nonspinning, aligned and antialigned spins, and several different precessing configurations. We compare obtained values with reported values in numerical simulations. As BBHs parameter space is still not completely covered by numerical simulations, we fit phenomenological formulas for practical applications to the radiated energy and final velocities obtained. Also, we compare the fits with reported values. In conclusion, we see that our formulae and correlations for the variables described in this work are consistent with those found in the general literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Tassone, Emmanuel Agustin; Kozameh, Carlos Nicolas; Final velocity and radiated energy in numerical simulations of binary black holes; American Physical Society; Physical Review D; 105; 4; 2-2022; 1-13
Compartir
Altmétricas