Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Scorpion Detection and Classification Systems Based on Computer Vision as a Prevention Tool

Giambelluca, Francisco Luis; Osio, Jorge Rafael; Giambelluca, Luis AlbertoIcon ; Cappelletti, Marcelo ÁngelIcon
Fecha de publicación: 01/2022
Editorial: Igi Publ
Revista: International Journal of Computer Vision and Image Processing
ISSN: 2155-6997
e-ISSN: 2155-6989
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

In this paper, automatic and real-time systems were developed to detect and classify two different genera of scorpions using computer vision and deep learning techniques, with the purpose of providing a prevention tool. The images of scorpions were obtained from an arachnology laboratory in Argentina. YOLO (you only look once) and MobileNet models were implemented. The data augmentation technique was applied to significantly increase the amount of training data. High accuracy and recall values have been achieved for both models, which guarantees that they can early and successfully detect scorpions. In addition, the MobileNet model has shown to have excellent performance to detect scorpions within an uncontrolled environment, to carry out multiple detections, and to recognize their danger in case of accidents. Finally, a comparison has been made with other different machine learning-based models used to identify scorpions.
Palabras clave: CLASSIFICATION , AUTOMATIC SYSTEM , SYSTEM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 836.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/206697
URL: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCVIP.30160
DOI: http://dx.doi.org/10.4018/IJCVIP.301605
Colecciones
Articulos(CEPAVE)
Articulos de CENTRO DE EST.PARASITOL.Y DE VECTORES (I)
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos(LEICI)
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Citación
Giambelluca, Francisco Luis; Osio, Jorge Rafael; Giambelluca, Luis Alberto; Cappelletti, Marcelo Ángel; Scorpion Detection and Classification Systems Based on Computer Vision as a Prevention Tool; Igi Publ; International Journal of Computer Vision and Image Processing; 12; 1; 1-2022; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES