Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multi-feature computational framework for combined signatures of dementia in underrepresented settings

Moguilner, Sebastián; Birba, AgustinaIcon ; Fittipaldi, Sol; Gonzalez Campo, CeciliaIcon ; Tagliazucchi, Enzo; Reyes, Pablo; Matallana, Diana; Parra, Mario A.; Slachevsky, Andrea; Farías, Gonzalo; Cruzat, Josefina; García, Adolfo MartínIcon ; Eyre, Harris A.; Joie, Renaud La; Rabinovici, Gil; Whelan, Robert; Ibañez, Agustin MarianoIcon
Fecha de publicación: 09/2022
Editorial: IOP Publishing
Revista: Journal of Neural Engineering
ISSN: 1741-2560
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología

Resumen

Objective. The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) remains challenging in underrepresented, underdiagnosed groups, including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study of dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary approaches are required in clinical settings. Approach. We developed a novel framework based on a gradient boosting machine learning classifier, tuned by Bayesian optimization, on a multi-feature multimodal approach (combining demographic, neuropsychological, magnetic resonance imaging (MRI), and electroencephalography/functional MRI connectivity data) to characterize neurodegeneration using site harmonization and sequential feature selection. We assessed 54 bvFTD and 76 AD patients and 152 healthy controls (HCs) from a Latin American consortium (ReDLat). Main results. The multimodal model yielded high area under the curve classification values (bvFTD patients vs HCs: 0.93 (±0.01); AD patients vs HCs: 0.95 (±0.01); bvFTD vs AD patients: 0.92 (±0.01)). The feature selection approach successfully filtered non-informative multimodal markers (from thousands to dozens). Results. Proved robust against multimodal heterogeneity, sociodemographic variability, and missing data. Significance. The model accurately identified dementia subtypes using measures readily available in underrepresented settings, with a similar performance than advanced biomarkers. This approach, if confirmed and replicated, may potentially complement clinical assessments in developing countries.
Palabras clave: FEATURE SELECTION , HARMONIZATION , MACHINE LEARNING , MULTIMODAL NEUROIMAGING , NEURODEGENERATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.256Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/206695
URL: https://iopscience.iop.org/article/10.1088/1741-2552/ac87d0
DOI: https://doi.org/10.1088/1741-2552/ac87d0
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Moguilner, Sebastián; Birba, Agustina; Fittipaldi, Sol; Gonzalez Campo, Cecilia; Tagliazucchi, Enzo; et al.; Multi-feature computational framework for combined signatures of dementia in underrepresented settings; IOP Publishing; Journal of Neural Engineering; 19; 4; 9-2022; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES