Mostrar el registro sencillo del ítem

dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Escrichs, Anira  
dc.contributor.author
Tagliazucchi, Enzo  
dc.contributor.author
Kringelbach, Morten L.  
dc.contributor.author
Deco, Gustavo  
dc.date.available
2023-08-02T13:29:26Z  
dc.date.issued
2022-11  
dc.identifier.citation
Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Tagliazucchi, Enzo; Kringelbach, Morten L.; Deco, Gustavo; Strength-dependent perturbation of wholebrain model working in different regimes reveals the role of fluctuations in brain dynamics; Public Library of Science; Plos Computational Biology; 18; 11; 11-2022; 1-32  
dc.identifier.issn
1553-734X  
dc.identifier.uri
http://hdl.handle.net/11336/206491  
dc.description.abstract
Despite decades of research, there is still a lack of understanding of the role and generating mechanisms of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used whole-brain computational models capable of presenting different dynamical regimes to reproduce empirical data's turbulence level. We showed that the model's fluctuations regime fitted to turbulence more faithfully reproduces the empirical functional connectivity compared to oscillatory and noise regimes. By applying global and local strength-dependent perturbations and subsequently measuring the responsiveness of the model, we revealed each regime's computational capacity demonstrating that brain dynamics is shifted towards fluctuations to provide much-needed flexibility. Importantly, fluctuation regime stimulation in a brain region within a given resting state network modulates that network, aligned with previous empirical and computational studies. Furthermore, this framework generates specific, testable empirical predictions for human stimulation studies using strength-dependent rather than constant perturbation. Overall, the whole-brain models fitted to the level of empirical turbulence together with functional connectivity unveil that the fluctuation regime best captures empirical data, and the strength-dependent perturbative framework demonstrates how this regime provides maximal flexibility to the human brain.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Neuroimaging  
dc.subject
Computational Modelling  
dc.subject
In silico perturbation  
dc.subject
Brain dynamical regimes  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Strength-dependent perturbation of wholebrain model working in different regimes reveals the role of fluctuations in brain dynamics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-02T10:48:39Z  
dc.journal.volume
18  
dc.journal.number
11  
dc.journal.pagination
1-32  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Universitat Pompeu Fabra; España. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Escrichs, Anira. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Tagliazucchi, Enzo. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Kringelbach, Morten L.. University Aarhus; Dinamarca  
dc.description.fil
Fil: Deco, Gustavo. Monash University; Australia. Universitat Pompeu Fabra; España  
dc.journal.title
Plos Computational Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pcbi.1010662