Artículo
Data-driven discovery of canonical large-scale brain dynamics
Piccinini, Juan Ignacio
; Deco, Gustavo; Kringelbach, Morten; Laufs, Helmut; Sanz Perl Hernandez, Yonatan
; Tagliazucchi, Enzo Rodolfo
Fecha de publicación:
10/2022
Editorial:
Oxford University Press
Revista:
Cerebral Cortex Communications
ISSN:
2632-7376
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.
Palabras clave:
BRAIN DYNAMICS
,
WHOLE-BRAIN MODELS
,
DATA-DRIVEN MODELS
,
SLEEP
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Piccinini, Juan Ignacio; Deco, Gustavo; Kringelbach, Morten; Laufs, Helmut; Sanz Perl Hernandez, Yonatan; et al.; Data-driven discovery of canonical large-scale brain dynamics; Oxford University Press; Cerebral Cortex Communications; 3; 4; 10-2022; 1-12
Compartir
Altmétricas