Mostrar el registro sencillo del ítem
dc.contributor.author
Ahumada, Maria Florencia
dc.contributor.author
Guevara, Liliana Mariela
dc.contributor.author
Favetto, Alicia Beatriz
dc.contributor.author
Filipovich, Ruben Eduardo
dc.contributor.author
Chiodi, Agostina Laura
dc.contributor.author
Viramonte, Jose German
dc.contributor.author
Giordano, G.
dc.date.available
2023-07-27T20:58:35Z
dc.date.issued
2022-09
dc.identifier.citation
Ahumada, Maria Florencia; Guevara, Liliana Mariela; Favetto, Alicia Beatriz; Filipovich, Ruben Eduardo; Chiodi, Agostina Laura; et al.; Electrical resistivity structure in the Tocomar geothermal system obtained from 3-D inversion of audio-magnetotelluric data (Central Puna, NW Argentina); Pergamon-Elsevier Science Ltd; Geothermics; 104; 9-2022
dc.identifier.issn
0375-6505
dc.identifier.uri
http://hdl.handle.net/11336/205860
dc.description.abstract
The Tocomar Geothermal System is located in the Puna Plateau (NW Argentina), within the Central Puna Energy Hub, and is considered one of the most promising places to harness potential alternative of power and heat sources in the Central Andean Volcanic Zone (16-28 °S). It is related to the Calama-Olacapato-Toro lineament and to the Quaternary Tocomar volcanic centre. Moreover, it is surrounded by active and fossil geothermal manifestations, like hot-springs, travertines and siliceous sinter deposits. Despite some geological studies in the area, no geophysical investigations have targeted the geothermal fields along the Central Puna. In this work we present a 3-D inversion of audio-magnetotelluric data around the Tocomar Geothermal System. These data was obtained in the frequency range of 1000-0.1 Hz to map the main elements of the geothermal system (clay cap and potential reservoir) at depths of approximately 1000 m. To achieve this goal, previous geoelectrical studies, the local geology and the trend of the main structures were also considered. For the 3-D inversion process the ModEM code was used. The model shows a low-resistivity layer (less than 10 Ωm) at least 300 m thick, at a depth of about 200–500 m, aligned with both the strike of the Calama-Olacapato-Toro lineament and the local superficial geothermal manifestations (hot-springs and hydrothermally altered rocks). This low-resistivity layer is linked with the clay cap at the shallow depth of the geothermal reservoir. At depths greater than 800 m, a gradual increase in resistivity is observed related to a potential reservoir within the fractured Ordovician basement. The final 3-D resistivity model highly correlates with the conceptual models of high-temperature volcanic geothermal systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CENTRAL ANDEAN VOLCANIC ZONE
dc.subject
ELECTROMAGNETIC METHOD
dc.subject
GEOPHYSICAL EXPLORATION
dc.subject
GEOTHERMAL FIELD
dc.subject
PUNA
dc.subject
RENEWABLE ENERGY
dc.subject.classification
Geociencias multidisciplinaria
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Electrical resistivity structure in the Tocomar geothermal system obtained from 3-D inversion of audio-magnetotelluric data (Central Puna, NW Argentina)
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-27T14:31:21Z
dc.journal.volume
104
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Ahumada, Maria Florencia. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Guevara, Liliana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina
dc.description.fil
Fil: Favetto, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina
dc.description.fil
Fil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
dc.description.fil
Fil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
dc.description.fil
Fil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
dc.description.fil
Fil: Giordano, G.. Università Roma Tre Iii. Dipartimento Di Scienze; Italia
dc.journal.title
Geothermics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.geothermics.2022.102436
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375650522000876
Archivos asociados