Artículo
The case of equality in Hölder's inequality for operators and matrices
Fecha de publicación:
03/2018
Editorial:
Royal Irish Academy
Revista:
Mathematical Proceedings of the Royal Irish Academy
ISSN:
1393-7197
e-ISSN:
2009-0021
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let p > 1 and 1/p + 1/q = 1. Consider Hölder’s inequality ∥ab∗∥1≤∥a∥p∥b∥q for the p-norms of n × n matrices. This note contains a simple proof (based on the case p = 2) of the fact that equality holds if and only if |a| p = λ|b| q for some λ ≥ 0. Without modification, the method of proof holds if a, b are matrices, compact operators, elements of a finite C∗ -algebra or a semi-finite von Neumann algebra.
Palabras clave:
HÖLDER INEQUALITY
,
TRACE NORM
,
EQUALITY
,
CAUCHY-SCHWARZ INEQUALITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Larotonda, Gabriel Andrés; The case of equality in Hölder's inequality for operators and matrices; Royal Irish Academy; Mathematical Proceedings of the Royal Irish Academy; 118; 1; 3-2018; 1-4
Compartir
Altmétricas