Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Local Belief Dynamics in Network Knowledge Bases

Gallo, Fabio RafaelIcon ; Simari, GerardoIcon ; Martinez, Maria VaninaIcon ; Abad Santos, Natalia VanesaIcon ; Falappa, Marcelo AlejandroIcon
Fecha de publicación: 22/10/2021
Editorial: Association for Computing Machinery
Revista: Acm Transactions On Computational Logic
ISSN: 1529-3785
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network? or how this can possibly occur? is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agents knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.
Palabras clave: BELIEF REVISION , NETWORK KNOWLEDGE BASES , SOCIAL NETWORKS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.288Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205778
URL: https://dl.acm.org/doi/10.1145/3477394
DOI: http://dx.doi.org/10.1145/3477394
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Gallo, Fabio Rafael; Simari, Gerardo; Martinez, Maria Vanina; Abad Santos, Natalia Vanesa; Falappa, Marcelo Alejandro; Local Belief Dynamics in Network Knowledge Bases; Association for Computing Machinery; Acm Transactions On Computational Logic; 23; 1; 22-10-2021; 4-36
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES