Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards evidence retrieval cost reduction in abstract argumentation frameworks with fallible evidence

Cohen, AndreaIcon ; Gottifredi, SebastiánIcon ; García, Alejandro Jorge; Simari, Guillermo RicardoIcon
Fecha de publicación: 07/12/2022
Editorial: AI Access Foundation
Revista: Journal of Artificial Intelligence Research
ISSN: 1076-9757
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Arguments in argumentation systems cannot always be considered as standalone entities, requiring the consideration of the pieces of evidence they rely on. This evidence might have to be retrieved from external sources such as databases or the web, and each attempt to retrieve a piece of evidence comes with an associated cost. Moreover, a piece of evidence may be available in a given scenario but not in others, and this is not known beforehand. As a result, the collection of active arguments (whose entire set of evidence is available) that can be used by the argumentation machinery of the system may vary from one scenario to another. In this work, we consider an Abstract Argumentation Framework with Fallible Evidence that accounts for these issues, and propose a heuristic measure used as part of the acceptability calculus (specifically, for building pruned dialectical trees) with the aim of minimizing the evidence retrieval cost of the arguments involved in the reasoning process. We provide an algorithmic solution that is empirically tested against two baselines and formally show the correctness of our approach.
Palabras clave: ABSTRACT ARGUMENTATION , EVIDENCE RETRIVAL
Ver el registro completo
 
Archivos asociados
Tamaño: 1.146Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205472
URL: https://www.jair.org/index.php/jair/article/view/13639
DOI: http://dx.doi.org/10.1613/jair.1.13639
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Cohen, Andrea; Gottifredi, Sebastián; García, Alejandro Jorge; Simari, Guillermo Ricardo; Towards evidence retrieval cost reduction in abstract argumentation frameworks with fallible evidence; AI Access Foundation; Journal of Artificial Intelligence Research; 75; 7-12-2022; 1293-1322
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES