Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Passive and Active Remote Sensing Data as Indicators of Vegetation Condition in Dry Woodland

Campos, Valeria EvelinIcon ; Fernandez Maldonado, Viviana NoemiIcon ; Amatta, Emilce del ValleIcon
Fecha de publicación: 01/2022
Editorial: Indian Soc Remote Sensing
Revista: Photonirvachak-journal Of The Indian Society Of Remote Sensing
ISSN: 0255-660X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otros Tópicos Biológicos

Resumen

An important challenge is getting to know the condition of vegetation in dry woodlands, fragile ecosystems with high ecological value, to propose conservation strategies. Our objectives were: (1) to quantify on-the-ground vegetation composition and structure in dry Ramorinoa girolae-dominated woodlands on three study sites, using (A) field-based methods and (B) passive and active remotely sensed data at multi-scale and (2) to assess whether the integration of different remote sensors allows for a better estimation. We recorded field-based data on 36 plots of 50 × 30 m distributed in three sites (Ischigualasto n = 16; Valle Fértil n = 10; Private land n = 10). On each plot, we estimated the standard deviation (SD) of passive (EVI—Enhanced Vegetation Index—and SATVI—Soil Adjusted Total Vegetation Index) and active imagery data (SD of VV and VH polarisation) at multi-scale. The results of this approach show that passive and active remote sensing data were good indicators of almost all field-based data recorded at stand scale, except for richness, which was not related to remote sensing data. Shrub biomass, tree biomass and abundance of R. girolae were better explained by multi than single-sensor models. Only the variance in canopy cover of R. girolae was explained by single-sensor models. This work expands our understanding of the relationship of field-based data with both passive and active remotely sensed data, providing evidence that they could be used as a proxy for vegetation structure in dry R. girolae-dominated woodlands.
Palabras clave: DRY RAMORINOA GIROLAE-DOMINATED WOODLANDS , OPTICAL REMOTE SENSING DATA , SYNTHETIC-APERTURE RADAR IMAGERY DATA , VEGETATION COMPOSITION , VEGETATION STRUCTURE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.358Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205433
URL: https://link.springer.com/10.1007/s12524-022-01497-9
DOI: http://dx.doi.org/10.1007/s12524-022-01497-9
Colecciones
Articulos(CIGEOBIO)
Articulos de CENTRO DE INVESTIGACIONES DE LA GEOSFERA Y BIOSFERA
Citación
Campos, Valeria Evelin; Fernandez Maldonado, Viviana Noemi; Amatta, Emilce del Valle; Passive and Active Remote Sensing Data as Indicators of Vegetation Condition in Dry Woodland; Indian Soc Remote Sensing; Photonirvachak-journal Of The Indian Society Of Remote Sensing; 50; 5; 1-2022; 815-831
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES